Examinando por Materia "Fluid simulations"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem 2D simulation flue implementing the lattice-boltzmann method(TRANS TECH PUBLICATIONS LTD, 2014-01-01) Ruiz, D.B.; Mesa, A.A.; Alvis, R.G.; Ruiz, D.B.; Mesa, A.A.; Alvis, R.G.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecánica AplicadaCurrently in the process of engineering, but increasingly implemented simulation methods since they are an economical and feasible to predict the behavior of some variable you wish to benefit. The problem of fluid simulation is a broad field of study, traditionally in this area are implemented domain discretization methods, volumes, differences or finite elements (Computational Fluid Dynamics), in this work, a different approach where the discretization is made on the physical properties of fluid and the fluid for reconstruction from its microscopic properties, simulating these, propagating Boltzmann distribution functions for the grid of nodes, this set is comprised of a fluid group of nodes, nodes fluid the border and nodes structure, docked the method to the boundary conditions necessary to simulate Glycerol in a pipe. © (2014) Trans Tech Publications, Switzerland.Ítem Fluid-structure coupling using lattice-Boltzmann and fixed-grid FEM(ELSEVIER SCIENCE BV, 2011-08-01) Garcia, Manuel; Gutierrez, Jorge; Rueda, Nestor; Mecánica AplicadaThis paper presents a method for the fluid-structure interaction by a hybrid approach that uses lattice-Boltzmann method (LBM) for the fluid dynamics analysis and fixed-grid FEM (FGFEM) for the structural analysis. The method is implemented in a high performance platform using GPUs to provide a high level of interactivity with the simulation. The solution uses the same Cartesian grid for both solvers. The coupling between both methods is accomplished by mapping the macroscopic pressure, velocity or momentum values from the LBM simulation into the corresponding nodes of the FGFEM structural problem. In spite of being based on a Cartesian grid, both solvers take into account the effect of curve boundaries. Also the effect of a moving boundary is considered in the fluid simulations. The examples presented in this paper show that the accuracy of the solution is as the same level of the finite volume method of the finite element method. On the other hand, the performance of the parallel implementation of the proposed method is of the order that allows real-time visualisation of the computing values for two-dimensional problems. © 2011 Elsevier B.V. All rights reserved.