Examinando por Materia "Enfermedades transmitidas por alimentos"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Ítem Microbiología predictiva mediante aprendizaje automatizado para la optimización de procesos productivos : Metanálisis(Universidad EAFIT, 2024) Yepes Medina, Verónica; Pinel Peláez, NicolásUnsafe food containing harmful bacteria, viruses, parasites or chemicals can cause more than 200 different illnesses, from diarrhea to cancer. Worldwide, an estimated 600 million (nearly 1 in 10 people) fall ill each year after eating contaminated food, resulting in 420.000 deaths and the loss of 33 million years of healthy life. Therefore, it is necessary to detect and respond to public health threats associated with unsafe food with enabling technologies or tools. Predictive microbiology is concerned with preventing, controlling or limiting the existence of microorganisms by mapping their potential responses to particular environmental conditions, such as temperature, pH, nutrients (protein and fat), water activity (aw) and others. And machine learning as a branch or artificial intelligence learns from these data, identifying patterns for decision making. Recent studies are based in the use of supervised machine learning models to predict the presence of a foodborne pathogenic microorganism at any stage of the production chain, the most commonly used models include Random Forest and support vector machine with rating metrics for accuracy and sensitivity >80%. The main evaluation metrics of the algorithms are: accuracy, F1 score, confusion matrix, sensitivity, specificity and area under the curve (ROC-AUC, Receiver-Operating-Characteristic). Studies have shown that Random Forest was the best model, exhibiting an accuracy of 95% and a F1 score of 98%. Here were evaluated twenty five (25) articles with library metafor of Rstudio version 4.2.1 and this information provides new opportunities to explore non-destructive models for rapid detection of microorganisms in the production chain.