Examinando por Materia "Effluent treatment"
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Analysis of CO2 adsorption in amine-functionalized porous silicas by molecular simulations(American Chemical Society, 2015-06-01) Builes S.; López-Aranguren, P.; Fraile, J.; Vega, L.F.; Domingo, C.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosWe present the results of a combined experimental-molecular simulations approach concerning the capacity for CO2 adsorption of aminosilica hybrid products synthesized using supercritical fluids. Two porous supports were examined for amine functionalization, an ordered mesoporous silica (MCM-41) and a disordered silica gel (SG40). The textural properties of the studied materials were analyzed by low-temperature N2 adsorption-desorption isotherms and compared to those of molecular simulations using the grand canonical Monte Carlo simulation method. The CO2 adsorption capacity of these materials was evaluated by recording CO2 adsorption isotherms up to 100 kPa. Molecular simulations of the CO2 adsorption behavior of selected samples were performed to gain a fundamental understanding of the effect of functionalization. This study shows that in the functionalized materials, the distance between nitrogen atoms of the grafted amines is a critical factor for the occurrence of CO2 chemisorption, providing some insight into key parameters for designing adsorbent materials for CO2 capture and separation. The relationship between the adsorption results with N2 and CO2 allow us to compare the potential applications of the materials in CO2 adsorption and separation processes. A correlation of the N2 adsorption at a given pressure with the CO2 adsorption at a different pressure allowed the prediction of which materials will perform well for these processes. The hybrid products with high amine density have desirable features required for industrial sorbents, such as an enhanced CO2 adsorption capacity and selectivity. © 2015 American Chemical Society.Ítem Efficient treatment for textile wastewater through sequential electrocoagulation, electrochemical oxidation and adsorption processes: Optimization and toxicity assessment(Elsevier BV, 2020-01-01) GilPavas E.; Dobrosz-Gómez I.; Gómez-García M.-Á.; GilPavas E.; Dobrosz-Gómez I.; Gómez-García M.-Á.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)In this work, the sequential Electrocoagulation + Electro-oxidation + Activated carbon adsorption (EC + EO + AC) process was studied as an alternative for the treatment of an industrial textile wastewater (TWW) issuing from a manufacturing company located in Medellín (Colombia). The EC's and EO's operational conditions were optimized using a Box-Behnken experimental design, the Response Surface Methodology and a constrained nonlinear optimization algorithm in terms of organic matter degradation efficiency. The best performance for EC (i. e., dye removal = 94%, COD and TOC degradation of 45 and 40%, respectively) was obtained using Fe anode and Boron Doped Diamond (BDD) cathode, with current density, jEC, equals to 5 mA/cm2, pH = 9.3, 60 RPM and 10 min of electrolysis. After EC treatment, the effluent biodegradability (evaluated as the BOD5/COD ratio) increases from 0.14 to 0.23. Regrettably, EC was not effective for the removal of acute toxicity to Artemia salina since the treated effluent remained very toxic (100%). The treatment of EC's effluent by EO enhanced organic pollutant removal. For EC + EO sequential process, EO optimal operational conditions (jEO = 10 mA/cm2, pH = 3, 240 RPM, BDD as anode and Fe as cathode) allowed reduction of 100% of color, 88% of COD and 79% of TOC after 30 min of electrolysis. Moreover, the BOD5/COD ratio increased from 0.23 to 0.58; however, the treated effluent remained very toxic to the Artemia salina. Consequently, an activated carbon adsorption step was included to complete the treatment process. Thus, by coupling the EC + EO + AC process, effluent's acute toxicity decreased completely. From molecular weight distribution analysis, it was concluded that EC + EO was efficient in eliminating low molecular weight (< 5 kDa) compounds. Finally, the operation cost, which includes chemical reagents, electrodes, energy consumption, and sludge disposal, for the EC + EO + AC sequential process was estimated in 3.83 USD /m3. © 2020 Elsevier B.V.Ítem Efficient treatment for textile wastewater through sequential electrocoagulation, electrochemical oxidation and adsorption processes: Optimization and toxicity assessment(Elsevier BV, 2020-01-01) GilPavas E.; Dobrosz-Gómez I.; Gómez-García M.-Á.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosIn this work, the sequential Electrocoagulation + Electro-oxidation + Activated carbon adsorption (EC + EO + AC) process was studied as an alternative for the treatment of an industrial textile wastewater (TWW) issuing from a manufacturing company located in Medellín (Colombia). The EC's and EO's operational conditions were optimized using a Box-Behnken experimental design, the Response Surface Methodology and a constrained nonlinear optimization algorithm in terms of organic matter degradation efficiency. The best performance for EC (i. e., dye removal = 94%, COD and TOC degradation of 45 and 40%, respectively) was obtained using Fe anode and Boron Doped Diamond (BDD) cathode, with current density, jEC, equals to 5 mA/cm2, pH = 9.3, 60 RPM and 10 min of electrolysis. After EC treatment, the effluent biodegradability (evaluated as the BOD5/COD ratio) increases from 0.14 to 0.23. Regrettably, EC was not effective for the removal of acute toxicity to Artemia salina since the treated effluent remained very toxic (100%). The treatment of EC's effluent by EO enhanced organic pollutant removal. For EC + EO sequential process, EO optimal operational conditions (jEO = 10 mA/cm2, pH = 3, 240 RPM, BDD as anode and Fe as cathode) allowed reduction of 100% of color, 88% of COD and 79% of TOC after 30 min of electrolysis. Moreover, the BOD5/COD ratio increased from 0.23 to 0.58; however, the treated effluent remained very toxic to the Artemia salina. Consequently, an activated carbon adsorption step was included to complete the treatment process. Thus, by coupling the EC + EO + AC process, effluent's acute toxicity decreased completely. From molecular weight distribution analysis, it was concluded that EC + EO was efficient in eliminating low molecular weight (< 5 kDa) compounds. Finally, the operation cost, which includes chemical reagents, electrodes, energy consumption, and sludge disposal, for the EC + EO + AC sequential process was estimated in 3.83 USD /m3. © 2020 Elsevier B.V.Ítem Mineralization of cyanide originating from gold leaching effluent using electro-oxidation: multi-objective optimization and kinetic study(SPRINGER, 2020-01-01) Dobrosz-Gómez I.; Gómez García M.Á.; Gaviria G.H.; GilPavas E.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosAbstract: This study examines the electro-oxidation (EO) of cyanide originating from an industrial plant´s gold leaching effluent. Experiments were carried out in a laboratory-scale batch cell reactor. Monopolar configuration of electrodes consisting of graphite (anode) and aluminum (cathode) was employed, operating in galvanostatic mode. Response Surface Methodology (RSM), based on a Box–Behnken experimental Design (BBD), was used to optimize the EO operational conditions. Three independent process variables were considered: initial cyanide concentration ([CN-]0 = 1000–2000 mg L-1), current density (J =7–107 mA cm-2), and stirring velocity (? = 250–750 rpm). The cyanide conversion (XCN-), Chemical Oxygen Demand (COD) removal percentage (%RCOD), and specific Energy Consumption per unit mass of removed cyanide (EC) were analyzed as response variables. Multi-objective optimization let to establish the most effective EO conditions ([CN-]0 = 1000 mg L-1, J = 100 mA cm-2 and ? = 750 rpm). The experimental data (XCN-, %RCOD, and EC) were fitted to second-order polynomial models with adjusted correlation coefficients (Radj2) of ca. 98, 99 and 87%, respectively. The kinetic analysis, performed at optimal EO operational conditions, allowed determination of time required to meet Colombian permissible discharge limits. The predictive capacity of kinetic expressions was verified against experimental data obtained for gold leaching effluent. Total cyanide removal and 96% of COD reduction were obtained, requiring EC of 71.33 kWh kg-1 and 180 min. The BOD5 (biological oxygen demand)/COD ratio increased from 4.52 × 10-4 to 0.5573, confirming effluent biodegradability after EO treatment. Graphic Abstract: [Figure not available: see fulltext.]The variation of cyanide (CN-), cyanate (CNO-) and ammonium (NH4 +) ions concentrations vs. time at alkaline conditions. EO operational conditions: [CN-]0 = 1000 mg/L, J = 100 mA/cm2 , ? = 750 rpm, [NaCl] = 0.15 M and pH 11.1. © 2020, Springer Nature B.V.Ítem Mineralization of cyanide originating from gold leaching effluent using electro-oxidation: multi-objective optimization and kinetic study(SPRINGER, 2020-01-01) Dobrosz-Gómez I.; Gómez García M.Á.; Gaviria G.H.; GilPavas E.; Dobrosz-Gómez I.; Gómez García M.Á.; Gaviria G.H.; GilPavas E.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Abstract: This study examines the electro-oxidation (EO) of cyanide originating from an industrial plant´s gold leaching effluent. Experiments were carried out in a laboratory-scale batch cell reactor. Monopolar configuration of electrodes consisting of graphite (anode) and aluminum (cathode) was employed, operating in galvanostatic mode. Response Surface Methodology (RSM), based on a Box–Behnken experimental Design (BBD), was used to optimize the EO operational conditions. Three independent process variables were considered: initial cyanide concentration ([CN-]0 = 1000–2000 mg L-1), current density (J =7–107 mA cm-2), and stirring velocity (? = 250–750 rpm). The cyanide conversion (XCN-), Chemical Oxygen Demand (COD) removal percentage (%RCOD), and specific Energy Consumption per unit mass of removed cyanide (EC) were analyzed as response variables. Multi-objective optimization let to establish the most effective EO conditions ([CN-]0 = 1000 mg L-1, J = 100 mA cm-2 and ? = 750 rpm). The experimental data (XCN-, %RCOD, and EC) were fitted to second-order polynomial models with adjusted correlation coefficients (Radj2) of ca. 98, 99 and 87%, respectively. The kinetic analysis, performed at optimal EO operational conditions, allowed determination of time required to meet Colombian permissible discharge limits. The predictive capacity of kinetic expressions was verified against experimental data obtained for gold leaching effluent. Total cyanide removal and 96% of COD reduction were obtained, requiring EC of 71.33 kWh kg-1 and 180 min. The BOD5 (biological oxygen demand)/COD ratio increased from 4.52 × 10-4 to 0.5573, confirming effluent biodegradability after EO treatment. Graphic Abstract: [Figure not available: see fulltext.]The variation of cyanide (CN-), cyanate (CNO-) and ammonium (NH4 +) ions concentrations vs. time at alkaline conditions. EO operational conditions: [CN-]0 = 1000 mg/L, J = 100 mA/cm2 , ? = 750 rpm, [NaCl] = 0.15 M and pH 11.1. © 2020, Springer Nature B.V.