Examinando por Materia "Dispersion (waves)"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Analysis of the stability and dispersion for a Riemannian acoustic wave equation(ELSEVIER SCIENCE INC, 2019-01-15) Quiceno, H. R.; Arias, C.; Quiceno, H. R.; Arias, C.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesThe construction of images of the Earth's interior using methods as reverse time migration (RTM) or full wave inversion (FWI) strongly depends on the numerical solution of the wave equation. A mathematical expression of the numerical stability and dispersion for a particular wave equation used must be known in order to avoid unbounded numbers of amplitudes. In case of the acoustic wave equation, the Courant–Friedrich–Lewy (CFL) condition is a necessary but is not a sufficient condition for convergence. Thus, we need to search other types of expression for stability condition. In seismic wave problems, the generalized Riemannian wave equation is used to model their propagation in domains with curved meshes which is suitable for zones with rugged topography. However, only a heuristic version of stability condition was reported in the literature for this equation. We derived an expression for stability condition and numerical dispersion analysis for the Riemannian acoustic wave equation in a two-dimensional medium and analyzed its implications in terms of computational cost. © 2018 Elsevier Inc.Ítem Finite element modeling of micropolar-based phononic crystals(Elsevier BV, 2019-11-11) Guarín-Zapata N.; Gomez J.; Valencia C.; Dargush G.F.; Hadjesfandiari A.R.; Mecánica AplicadaThe performance of a Cosserat/micropolar solid as a numerical vehicle to represent dispersive media is explored. The study is conducted using the finite element method with emphasis on Hermiticity, positive definiteness, principle of virtual work and Bloch–Floquet boundary conditions. The periodic boundary conditions are given for both translational and rotational degrees of freedom and for the associated force- and couple-traction vectors. Results in terms of band structures for different material cells and mechanical parameters are provided. © 2019 Elsevier B.V.