Examinando por Materia "Deformation"
Mostrando 1 - 11 de 11
Resultados por página
Opciones de ordenación
Ítem Análisis de las deformaciones de las lutitas negras de la formación Penderisco en el portal salida Cañasgordas del túnel Guillermo Gaviria Echeverri, entre el PK 36+080 y PK 35+518 municipios de Giraldo y Cañasgordas, Antioquia(Universidad EAFIT, 2022) Sanín Zuluaga, Mateo; Noguera-Montoya, SilvanaÍtem Application Design Methodology for Building a Device Foil Incremental Deformation by Double Point Method Dieless-DPIF(Institute of Electrical and Electronics Engineers Inc., 2014-01-01) Bermudez, G.P.; Garcia, J.A.; Lozano, A.B.; Bermudez, G.P.; Garcia, J.A.; Lozano, A.B.; Universidad EAFIT. Departamento de Ingeniería de Producción; Tecnologías para la ProducciónThe new manufacturing technologies of the world are increasingly demanding the design and redesign of new alternative products and processes that can be useful and low cost term. The alternative solution and methodology to innovate in manufacturing processes of incremental sheet metal forming is shown in this paper. Through the methodology Product design specification (PDS) as a practical and effective solution, describes the design step, specific requirements, materials and building process to achieve a device's architecture for a sheet metal deformation by two-point method Die less - DPIF. The selection, simplification and functionality becomes a fundamental objective for design engineers. © 2014 IEEE.Ítem Dislocation density based flow stress model applied to the PFEM simulation of orthogonal cutting processes of Ti-6Al-4V(MDPI AG, 2020-01-01) Rodríguez, J.M.; Larsson, S.; Carbonell, J.M.; Jonsén, P.; Rodríguez, J.M.; Larsson, S.; Carbonell, J.M.; Jonsén, P.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasMachining of metals is an essential operation in the manufacturing industry. Chip formation in metal cutting is associated with large plastic strains, large deformations, high strain rates and high temperatures, mainly located in the primary and in the secondary shear zones. During the last decades, there has been significant progress in numerical methods and constitutive modeling for machining operations. In this work, the Particle Finite Element Method (PFEM) together with a dislocation density (DD) constitutive model are introduced to simulate the machining of Ti-6Al-4V. The work includes a study of two constitutive models for the titanium material, the physically based plasticity DD model and the phenomenology based Johnson-Cook model. Both constitutive models were implemented into an in-house PFEM software and setup to simulate deformation behaviour of titanium Ti6Al4V during an orthogonal cutting process. Validation show that numerical and experimental results are in agreement for different cutting speeds and feeds. The dislocation density model, although it needs more thorough calibration, shows an excellent match with the results. This paper shows that the combination of PFEM together with a dislocation density constitutive model is an excellent candidate for future numerical simulations of mechanical cutting. © 2020 by the authors.Ítem Evolución termo-cinemática de rocas generadoras y estimación de hidrocarburos retenidos en un área estructuralmente compleja : caso cretácico superior, Valle Medio del Magdalena (VMM)(Universidad EAFIT, 2021) Sánchez Rueda, Nelson; Guzmán Vega, Mario Alberto; Quintero Montoya, Olga LucíaÍtem Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity?(ELSEVIER SCIENCE BV, 2011-04-01) Suter, F.; Martinez, J. I.; Velez, M. I.; Universidad EAFIT. Departamento de Geología; Ciencias del MarThe detailed study of four deformed intervals from the Holocene fluvio-lacustrine deposits of the Santa Fe-Sopetrán Basin in northern Colombia shows 17 types of soft-sediment deformation (SSD) structures. Evidence indicates that seismic activity was responsible for the SSD structures, a conclusion reached after considering the environmental conditions at the time of sediment deposition and shortly after, and the detailed analysis of the driving force systems. Other triggers (i.e. overloading and rapid sedimentation), however, are not discarded. Intervals showing SSD structures occurred at centennial frequencies and apparently resulted from Mw 6-7 earthquakes. The Holocene age of these major shaking events should be seriously considered when evaluating the seismic hazard and risk for the middle Cauca Valley and the nearby city of Medellín with 3. million inhabitants. © 2010 Elsevier B.V.Ítem Mechanical properties of reinforcing steel used in Colombia(Universidad EAFIT, 2005-04-01) González Quintana, Victoria; Botero, Juan Carlos; Rochel, Roberto; Vidal, Julián; Alvarez Uribe, Martha Cecilia; Universidad EAFITÍtem Regional controls in the distribution and morphometry of deep-water gravitational deposits along a convergent tectonic margin. Southern Caribbean of Colombia(Elsevier BV, 2020-08-06) Naranjo Vesga, Julián Francisco; Ortiz Karpf, Andrea; Wood, Lesli; Jobe, Z.; Paniagua, J.; Shumaker, L.; Mateus Tarazona, Darwin; Universidad EAFIT. Departamento de Geología; Ciencias del MarDeep-water fold and thrust belts often develop in convergent tectonic margins, creating irregular slope profiles that control the distribution of deep-water gravity deposits. However, in areas with high sediment supply, the erosion and sedimentation can minimize structural relief and smooth the slope. Using multibeam bathymetry with 3D seismic data, we analyze the distribution of deep-water gravity-driven deposits along the convergent margin of the southern Caribbean of Colombia, comparing areas with different continental sediment supply, slope profile, and shelf width. We identify three geomorphological zones: The Northern, Central and Southern Zones. The Northern Zone is characterized by a gentle slope topography, high sediment supply, and large (>100 km length) channel-levee systems traversing the slope and basin floor. In this zone, shelf-attached mass-transport deposits erode and smooth sea-floor topography. The Central Zone is characterized by low sediment supply and steep and irregular slope topography. Here, short-runout mass-transport deposits sourced from the crests and steep flanks of emergent anticlines are common. The irregular relief created by tectonic deformation forms barriers for sediment transport, leading to tortuous sediment-flow pathways. Submarine canyons incise the thrust-cored anticlines, transporting sediment through interconnected, adjacent piggyback sub-basins. Finally, the Southern Zone is characterized by steep slope and moderate sediment supply. Here, tectonic deformation has been smoothed by numerous shelf-attached mass-transport deposits. The erosional scours carved by mass flows merge downslope and evolve into submarine canyons that can deliver mass-transport deposits more than 80 km into the basin. We analyze the impact of slope profile, sediment input and shelf width on the distribution and morphology of deep-water deposits along the southern Colombian Caribbean margin, and present a predictive model for the depositional patterns more likely to develop in other continental margins affected by deep-water fold and thrust belts. © 2020 Elsevier LtdÍtem Spherical indentation behavior of asphalt mixtures(ASCE-AMER SOC CIVIL ENGINEERS, 2007-01-01) Ossa, E.A.; Collop, A.C.; Ossa, E.A.; Collop, A.C.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThe spherical indentation response of a dense bitumen macadam asphalt mixture with two different volume fractions of bitumen binder is investigated both experimentally and via an analytical model. The model for the indentation of bitumen developed by Ossa et al. in 2005, was used to study the spherical indentation behavior of the mixtures with good agreement when compared to experimental results. An extensive experimental study of the monotonic and recovery spherical indentation behavior is reported for a range of temperatures. In line with the predictions of the model, the monotonic indentation response of the mixtures exhibits a power-law dependence on the indentation force. The model is also successful in capturing the indentation recovery behavior of the mixtures. A comparison of the material parameters obtained from uniaxial compression and indentation tests showed that indentation tests can be used in an easy and reliable way to obtain the fundamental asphalt parameters. Further, parameters found from indentation tests implicitly account for the confining conditions generated by the aggregate particles below the indenter. © 2007 ASCE.Ítem Statistical analysis of the parameters in SPIF/DPIF in the thickness reduction in an experimental geometry(Inderscience Publishers, 2019-01-01) Giraldo-Castrillon F.-A.; Giraldo-Castrillon Y.-M.; Páramo-Bermúdez G.-J.; Giraldo-Castrillon F.-A.; Giraldo-Castrillon Y.-M.; Páramo-Bermúdez G.-J.; Universidad EAFIT. Departamento de Ingeniería de Producción; Grupo en Tecnologías para la ProducciónThe objective of the present study was to determine the thickness reduction during the incremental deformation process with two techniques: SPIF/DPIF. A geometric structure was built using software computer-aided design (CAD) and the paths simulated in software computer-aided manufacturing (CAM). Experimental design of a full factorial type was made 23, for each technique, eight simulations, and three replicas. The variables studied in each experiment were the wall angle, the depth increase and the diameter of the tool. The three parameters are associated with the incremental deformation, although the angle was the most influential and the interaction between them in both techniques was significant. There was no difference in the comparative analysis between the different points in which the reduction of the thickness measured, just as neither one technique showed to be superior to the other. The angle of 68°, the depth of 1.0707 mm and the diameter of 9.3737 mm produced the least deformation with the SPIF technique and the angle of 60°, the depth of 1.2 mm and the diameter of 8 mm produced the least deformation with DPIF. © 2019 Inderscience Enterprises Ltd.Ítem Time-dependent Mechanical Response at the Nanoscale(Elsevier B.V., 2020-01-01) Múnera, J.C.; Goswami, D.; Martinez, R.V.; Ossa, E.A.; Múnera, J.C.; Goswami, D.; Martinez, R.V.; Ossa, E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaModern nanofabrication processes on metals, polymers, and ceramics often require deforming these materials at strain rates ranging ~101 – 107 s–1. Therefore, there is a need to develop an appropriate methodology capable of measuring and predicting the effects of these deformation rates on the final mechanical response of the nanomaterial being processed. Here we report an experimental study of the indentation response of three materials with different nature and mechanical properties, but with known time-dependent mechanical responses. These materials allow validation of the findings under a wide variety of conditions. One metal (Pb), and two polymers (PMMA and PS), were indented at the sub-20 nm scale using commercial atomic force microscopy (AFM) probes. Based on our experimental findings, we also propose an analytical model for creeping solids in which their nanoscale mechanical behavior is completely described by two components: an elastic component (characterized by the Hertz contact model) and a time-dependent component (characterized by a power-law model). The proposed experimental protocol is easy to implement, and the analytical model can be extended to a large variety of materials. The ability to characterize the time-dependence of the mechanical response of different materials at the nanoscale will enable a better estimation of the effect of manufacturing processes on the properties and performance of nanomaterials. © 2020 Elsevier LtdÍtem Timing of rifting in the southern Gulf of California and its conjugate margins: Insights from the plutonic record(Geological Society of America, 2015-05-01) Duque-Trujillo, J.F.; Duque-Trujillo, J.F.; Universidad EAFIT. Departamento de Ciencias; Geología Ambiental y TectónicaThe Gulf of California is a young example of crustal stretching and transtensional shearing leading to the birth of a new oceanic basin at a formerly convergent margin. Previous studies focused along the southwestern rifted margin in Baja California...