Examinando por Materia "Datos espaciales"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem ECOCAMPUS EAFIT Sistema de Información Geográfica(Universidad EAFIT, 2017) Úsuga Úsuga, Nubia Inés; Acosta Correa, Beatriz SusanaÍtem Efecto ingreso y disparidades en el mismo sobre los delitos en las comunas de Medellín(Universidad EAFIT, 2014) Valderrama López, Juan David; Velásquez Ceballos, Hermilson; Gómez Toro, CatalinaEste artículo es una aproximación al cálculo de la elasticidad ingreso en las variables de criminalidad, especialmente homicidios y hurtos -- Se muestra entonces que las diferencias distributivas del ingreso a través de las 16 comunas y 5 corregimientos de Medellín en el periodo 2004-2012 influencian en gran medida el comportamiento criminal de las mismas -- Adicionalmente, mediante análisis de econometría espacial, se evidencia que la heterogeneidad individual es significativa para explicar la distribución de las variables delictivas y socioeconómicas en la ciudadÍtem Essays in Development Economics: Spatial data for exploring development patterns(Universidad EAFIT, 2024) Sánchez Saldarriaga, Andrés Felipe; Muñoz Mora, Juan Carlos; Acosta Mejía, Camilo AndrésÍtem Factores determinantes del precio de arriendo de viviendas en ciudades colombianas : un enfoque de modelos hedónicos(Universidad EAFIT, 2024) Heredia Barbosa, Alejandro; Cifuentes Vásquez, Felipe; Almonacid Hurtado, Paula MaríaHousing prices (rental and purchase) have constantly been an issue of utmost importance for policymakers regarding urban (and other) sustainability policies. Recently, this issue has taken on great relevance in the case of Colombia due to the sustained growth in real estate market prices. This study analyzes the determinants of rental prices in the main cities of Colombia (Bogota, Medellin, and Cali) for the year 2023, taking a hedonic model approach, through the use of a database with rental prices, structural characteristics of real estate and spatial variables (latitude and longitude) for these cities. It is found that the socioeconomic stratum, the area of the property and the number of bathrooms and garages have a positive impact on the rental price, while the number of rooms has a negative effect. In addition, specific characteristics were identified that influence the increase in price, such as the presence of a balcony or green areas. A Geographically Weighted Regression (GWR) regression was also performed to study the case of the city of Medellin (due to the international attention it has received in recent months), and heterogeneity was observed in the influence of the variables studied in different city areas.