Examinando por Materia "DEFORMACIONES"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Experiment design in compliant mechanisms and kinematic identification of parallel mechanisms(Universidad EAFIT, 2010) Restrepo Arango, David; Ruíz Salguero, Oscar EduardoThis article discusses a procedure for force-displacement modeling compliant mechanisms by using a design of computer experiments methodology -- This approach produces a force-displacement meta-model that is suited for real-time control of compliant mechanisms -- The term meta-model is used to represent a simplified and efficient mathematical model of unknown phenomena -- The meta-modeling of compliant mechanisms is performed from virtual experiments based on factorial- and space-filling design of experiments -- The procedure is used to model the quasi-static behavior of the HexFlex compliant mechanism -- The HexFlex is a parallel compliant mechanism for nano-manipulation that allows six degrees of freedom of its moving stage -- The meta-model of the HexFlex is calculated from experiments with the Finite Element Method (FEM) -- The obtained meta-model for the HexFlex is linear for the range of movement of the mechanism -- The accuracy of the meta-model was calculated conducting a set of computer experiments with random uniform distribution of the input forces -- Three criteria were calculated in each displacement direction (x, y, z, θx, θy, θz) comparing the meta-model prediction with respect to the results of the virtual experiments: 1. maximum of the absolute value of the error, 2. relative error, and 3. root mean square error -- The maximum errors were founded adequate with respect to demanding manufacturing tolerances (absolute errors) and lower than errors reported by other authors (relative errors)Ítem Spring–particle model for hyperelastic cloth(Universidad Nacional de Colombia, 2007-03) García, Manuel; Gómez, Mario; Ruíz, Óscar; Boulanger, Pierre; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEEste artículo presenta un modelo computacional para la simulación de telas hiperelásticas -- El modelo propuesto tiene un enfoque multi−partículas y simula la interacción de un material textil con un objeto deformante -- La tela está representada por mallas rectangulares compuestas por resortes, este hecho permite al modelo comportarse ortotrópicamente y en consecuencia es posible simular sus propiedades en ambos sentidos -- Las relaciones constitutivas del material preservan las capacidades hiperelásticas naturales de la tela -- En el modelo desarrollado aquí, inicialmente la tela se encuentra en su estado natural no deformado -- Luego se le da una deformación inicial que garantice el no contacto o intersección con el objeto deformante -- Finalmente, la tela deformada es liberada, en consecuencia ella comienza a moverse iterativamente hacia a una posición de equilibrio -- La posición final de equilibrio es alcanzada cuando las fuerzas internas son balanceadas por las fuerzas externas de contacto causadas por el objeto -- Esto se logra cuando el criterio de parada ha sido satisfechoÍtem Spring–particle model for hyperelastic cloth(2005-05) García, Manuel; Gómez, Mario; Ruíz, Óscar; Boulanger, Pierre; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article presents a computational model to simulate the deformation of hyperelastic fabrics -- The model is based on a spring−particle approach and it simulates the interaction of a textile tissue with a forming body -- The fabric is represented by rectangular meshes of springs -- This fact enables the model to behave orthotropically and therefore it is possible to simulate the warp and weft properties -- The constitutive relations preserve the natural hyperelastic capabilities of the cloth -- In the model developed herein, initially the cloth lies in its relaxed un−deformed state -- Then it is given an initial deformation that guarantees no contact nor intersection with the forming rigid body -- Finally, the deformed cloth is realised, and moves iteratively towards an equilibrium location -- The final equilibrium location is reached when the internal forces are balanced by the external contact forces caused by the rigid object -- This is achieved when the stop criterion has been satisfied