Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Convolutional neural networks"

Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Automatic detection of building typology using deep learning methods on street level images
    (PERGAMON-ELSEVIER SCIENCE LTD, 2020-03-20) Duque, J.; Gonzalez, D.; Rueda Plata, Diego; Acevedo, A.; Ramos, R.; Betancourt, A.; García, S.; Universidad EAFIT. Departamento de Economía y Finanzas; Research in Spatial Economics (RISE)
    An exposure model is a key component for assessing potential human and economic losses from natural disasters. An exposure model consists of a spatially disaggregated description of the infrastructure and population of a region under study. Depending on the size of the settlement area, developing such models can be a costly and time-consuming task. In this paper we use a manually annotated dataset consisting of approximately 10,000 photos acquired at street level in the urban area of Medellín to explore the potential for using a convolutional neural network (CNN) to automatically detect building materials and types of lateral-load resisting systems, which are attributes that define a building's structural typology (which is a key issue in exposure models for seismic risk assessment). The results of the developed model achieved a precision of 93% and a recall of 95% when identifying nonductile buildings, which are the buildings most likely to be damaged in an earthquake. Identifying fine-grained material typology is more difficult, because many visual clues are physically hidden, but our model matches expert level performances, achieving a recall of 85% and accuracy scores ranging from 60% to 82% on the three most common building typologies, which account for 91% of the total building population in Medellín. Overall, this study shows that a CNN can make a substantial contribution to developing cost-effective exposure models. © 2020 Elsevier Ltd
  • No hay miniatura disponible
    Ítem
    Automatic detection of building typology using deep learning methods on street level images
    (PERGAMON-ELSEVIER SCIENCE LTD, 2020-03-20) Duque, J.; Gonzalez, D.; Rueda Plata, Diego; Acevedo, A.; Ramos, R.; Betancourt, A.; García, S.; Duque, J.; Gonzalez, D.; Rueda Plata, Diego; Acevedo, A.; Ramos, R.; Betancourt, A.; García, S.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de Ingeniería
    An exposure model is a key component for assessing potential human and economic losses from natural disasters. An exposure model consists of a spatially disaggregated description of the infrastructure and population of a region under study. Depending on the size of the settlement area, developing such models can be a costly and time-consuming task. In this paper we use a manually annotated dataset consisting of approximately 10,000 photos acquired at street level in the urban area of Medellín to explore the potential for using a convolutional neural network (CNN) to automatically detect building materials and types of lateral-load resisting systems, which are attributes that define a building's structural typology (which is a key issue in exposure models for seismic risk assessment). The results of the developed model achieved a precision of 93% and a recall of 95% when identifying nonductile buildings, which are the buildings most likely to be damaged in an earthquake. Identifying fine-grained material typology is more difficult, because many visual clues are physically hidden, but our model matches expert level performances, achieving a recall of 85% and accuracy scores ranging from 60% to 82% on the three most common building typologies, which account for 91% of the total building population in Medellín. Overall, this study shows that a CNN can make a substantial contribution to developing cost-effective exposure models. © 2020 Elsevier Ltd
  • No hay miniatura disponible
    Ítem
    Automatic detection of building typology using deep learning methods on street level images
    (PERGAMON-ELSEVIER SCIENCE LTD, 2020-03-20) Duque, J.; Gonzalez, D.; Rueda Plata, Diego; Acevedo, A.; Ramos, R.; Betancourt, A.; García, S.; Mecánica Aplicada
    An exposure model is a key component for assessing potential human and economic losses from natural disasters. An exposure model consists of a spatially disaggregated description of the infrastructure and population of a region under study. Depending on the size of the settlement area, developing such models can be a costly and time-consuming task. In this paper we use a manually annotated dataset consisting of approximately 10,000 photos acquired at street level in the urban area of Medellín to explore the potential for using a convolutional neural network (CNN) to automatically detect building materials and types of lateral-load resisting systems, which are attributes that define a building's structural typology (which is a key issue in exposure models for seismic risk assessment). The results of the developed model achieved a precision of 93% and a recall of 95% when identifying nonductile buildings, which are the buildings most likely to be damaged in an earthquake. Identifying fine-grained material typology is more difficult, because many visual clues are physically hidden, but our model matches expert level performances, achieving a recall of 85% and accuracy scores ranging from 60% to 82% on the three most common building typologies, which account for 91% of the total building population in Medellín. Overall, this study shows that a CNN can make a substantial contribution to developing cost-effective exposure models. © 2020 Elsevier Ltd
  • No hay miniatura disponible
    Ítem
    Detección automática para identificar la tipología de los edificios en Medellín
    (Universidad EAFIT, 2020-12-01) Martinez Guerrero, Christian Alexander; Martinez-Guerrero, Christian Alexander; Gonzalez, Daniela; Rueda Plata, Diego; Acevedo, Ana B.; Duque, Juan C.; Ramos Pollán, Raul; Betancourt, Alejandro; García, Sebastian; Research in Spatial Economics; Mecánica Aplicada
  • No hay miniatura disponible
    Publicación
    Detección temprana de melanoma : aplicación de técnicas de procesamiento de imágenes y aprendizaje profundo
    (Universidad EAFIT, 2025) Lacouture Fierro, Juan David; Álvarez Barrera, Claudia Patricia
    Skin cancer is the most common type of cancer worldwide, with melanoma accounting for only 1% of cases but causing most deaths associated with this disease. In the United States, 97,610 new cases of melanoma were diagnosed in 2023, with a mortality rate of 7,990. In Colombia, the incidence of melanoma has increased significantly in recent years. According to the Cuenta de Alto Costo, 7,881 new cases were reported in 2024, with 11.94% of diagnoses concentrated in Bogotá and the Central region. Additionally, the total number of cases treated in the country increased from 53,622 in 2017 to more than 105,000 in 2021. These figures place Colombia as the fourth country in the Americas with the highest incidence of melanoma, highlighting the urgent need to implement innovative tools for early diagnosis. This project develops a deep learning model to diagnose melanoma through medical imaging, utilizing convolutional neural networks and advanced image processing techniques. The model includes data collection, training, and validation, aiming to deliver rapid and accurate diagnoses. The research encourages for the integration of artificial intelligence into medical practice, enabling early diagnosis in regions with limited access to specialists and alleviating the burden on the healthcare system. In conclusion, this initiative represents a milestone in dermatological care in Colombia, benefiting both high-incidence areas and rural communities.
  • No hay miniatura disponible
    Ítem
    Modelos de clasificación de emociones basados en CNN y ViT
    (Universidad EAFIT, 2024) Ruiz Ramírez, Santiago; Montoya Múnera, Edwin Nelson
    The present project focuses on comparing the performance of convolutional neural network (CNN) and vision transformer (ViT) models to classify emotions in facial images. The problem lies in the accuracy of CNNs, which still faces challenges, while ViTs have emerged as a promising alternative, highlighting the importance of addressing emotions in the context of mental health, as these can influence the ability to creative work and are linked to different clinical study conditions.

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias