Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Context-aware"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Autonomous recommender system architecture for virtual learning environments
    (Elsevier B.V., 2020-01-01) Monsalve-Pulido, J.; Aguilar, J.; Montoya, E.; Salazar, C.; Monsalve-Pulido, J.; Aguilar, J.; Montoya, E.; Salazar, C.; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las Comunicaciones
    This article proposes an architecture of an intelligent and autonomous recommendation system to be applied to any virtual learning environment, with the objective of efficiently recommending digital resources. The paper presents the architectural details of the intelligent and autonomous dimensions of the recommendation system. The paper describes a hybrid recommendation model that orchestrates and manages the available information and the specific recommendation needs, in order to determine the recommendation algorithms to be used. The hybrid model allows the integration of the approaches based on collaborative filter, content or knowledge. In the architecture, information is extracted from four sources: the context, the students, the course and the digital resources, identifying variables, such as individual learning styles, socioeconomic information, connection characteristics, location, etc. Tests were carried out for the creation of an academic course, in order to analyse the intelligent and autonomous capabilities of the architecture. © 2020 The Authors
  • No hay miniatura disponible
    Ítem
    Hacia un método de predicción de resultados de evaluación en un contexto de micro aprendizaje
    (Universidad EAFIT, 2020) Sánchez Castrillón, Jose David; Vallejo, Paola; Tabares Betancur, Marta Silvia; Tabares Betancur, Marta Silvia
    This paper presents a method for predicting the evaluation results of learners interacting with a context-aware microlearning system. We use ASUM-DM to guide di erent data analytics tasks, including applying a genetic algorithm that selects the prediction's highest weight features. Then, we apply machine learning models like Random Forest, Gradient Boosting Tree, Decision Tree, SVM, and Neural Networks to train data and evaluate the context's e ects, either success or failure of the learner's evaluation. We are interested in nding the model of signi cant context-in uence to the learner's evaluation results. The Random Forest model provided an accuracy of 94%, which was calculated with the cross-validation technique. Thus, it is possible to conclude that the model can accurately predict the evaluation result and relate it with the learner context. The model result is a useful insight for sending noti cations to the learners to improve the learning process. We want to provide recommendations about learner behavior and context and adapt the microlearning content in the future.

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias