Examinando por Materia "Cluster validity indices"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Standardized Approaches for Assessing Metagenomic Contig Binning Performance from Barnes-Hut t-Stochastic Neighbor Embeddings(SPRINGER, 2020-01-01) Ceballos J.; Ariza-Jiménez L.; Pinel N.; Ceballos J.; Ariza-Jiménez L.; Pinel N.; Universidad EAFIT. Departamento de Ciencias; Ciencias Biológicas y Bioprocesos (CIBIOP)The performance of unsupervised methods for metagenomic binning is often assessed using simulated microbial communities. The lack of well-characterized evaluation protocols and approaches to community construction cognizant of biological realities impedes the rigorous assessment and standardization of the binning process. This work attempted to standardize performance evaluation using benchmark communities constructed according to the genome similarity metric Average Amino Acid identity. This approach allowed us to extend and deepen our previous research on the unsupervised binning of metagenomic sequence fragments based on low-dimensional embeddings of pentamer frequency profiles. Experimental results evidenced our method’s potential for the binning of metagenomic contigs to become an alternative to state-of-the-art methods such as MetaCluster 3.0. © 2020, Springer Nature Switzerland AG.Ítem Standardized Approaches for Assessing Metagenomic Contig Binning Performance from Barnes-Hut t-Stochastic Neighbor Embeddings(SPRINGER, 2020-01-01) Ceballos J.; Ariza-Jiménez L.; Pinel N.; Ceballos J.; Ariza-Jiménez L.; Pinel N.; Universidad EAFIT. Departamento de Ciencias; Modelado MatemáticoThe performance of unsupervised methods for metagenomic binning is often assessed using simulated microbial communities. The lack of well-characterized evaluation protocols and approaches to community construction cognizant of biological realities impedes the rigorous assessment and standardization of the binning process. This work attempted to standardize performance evaluation using benchmark communities constructed according to the genome similarity metric Average Amino Acid identity. This approach allowed us to extend and deepen our previous research on the unsupervised binning of metagenomic sequence fragments based on low-dimensional embeddings of pentamer frequency profiles. Experimental results evidenced our method’s potential for the binning of metagenomic contigs to become an alternative to state-of-the-art methods such as MetaCluster 3.0. © 2020, Springer Nature Switzerland AG.Ítem Standardized Approaches for Assessing Metagenomic Contig Binning Performance from Barnes-Hut t-Stochastic Neighbor Embeddings(SPRINGER, 2020-01-01) Ceballos J.; Ariza-Jiménez L.; Pinel N.; Ceballos J.; Ariza-Jiménez L.; Pinel N.; Universidad EAFIT. Departamento de Ciencias; Bioiversidad, Evolución y ConservaciónThe performance of unsupervised methods for metagenomic binning is often assessed using simulated microbial communities. The lack of well-characterized evaluation protocols and approaches to community construction cognizant of biological realities impedes the rigorous assessment and standardization of the binning process. This work attempted to standardize performance evaluation using benchmark communities constructed according to the genome similarity metric Average Amino Acid identity. This approach allowed us to extend and deepen our previous research on the unsupervised binning of metagenomic sequence fragments based on low-dimensional embeddings of pentamer frequency profiles. Experimental results evidenced our method’s potential for the binning of metagenomic contigs to become an alternative to state-of-the-art methods such as MetaCluster 3.0. © 2020, Springer Nature Switzerland AG.