Examinando por Materia "Chikungunya"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem A high-performance hybrid agent-based model for simulating urban vector-borne disease transmission(Universidad EAFIT, 2024) Londoño Montoya, Luisa Fernanda; Escudero Marín, Paula Alejandra; Escudero Marín, Paula AlejandraÍtem Mathematical modeling of Chikungunya fever control(SPIE-INT SOC OPTICAL ENGINEERING, 2015-01-01) Hincapie-Palacio, Doracelly; Ospina, Juan; Hincapie-Palacio, Doracelly; Ospina, Juan; Universidad EAFIT. Departamento de Ciencias; Lógica y ComputaciónChikungunya fever is a global concern due to the occurrence of large outbreaks, the presence of persistent arthropathy and its rapid expansion throughout various continents. Globalization and climate change have contributed to the expansion of the geographical areas where mosquitoes Aedes aegypti and Aedes albopictus (Stegomyia) remain. It is necessary to improve the techniques of vector control in the presence of large outbreaks in The American Region. We derive measures of disease control, using a mathematical model of mosquito-human interaction, by means of three scenarios: a) a single vector b) two vectors, c) two vectors and human and non-human reservoirs. The basic reproductive number and critical control measures were deduced by using computer algebra with Maple (Maplesoft Inc, Ontario Canada). Control measures were simulated with parameter values obtained from published data. According to the number of households in high risk areas, the goals of effective vector control to reduce the likelihood of mosquito-human transmission would be established. Besides the two vectors, if presence of other non-human reservoirs were reported, the monthly target of effective elimination of the vector would be approximately double compared to the presence of a single vector. The model shows the need to periodically evaluate the effectiveness of vector control measures. © 2015 SPIE.