Examinando por Materia "Calculations"
Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
Ítem Distance interaction in education processes using a Telepresence tool(SPRINGER-VERLAG BERLIN, 2010-01-01) Giraldo, F.; Jiménez, A.; Trefftz, H.; Restrepo, J.; Esteban, P.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Estudios en Mantenimiento (GEMI)Distance interaction among educational communities is becoming increasingly important. Courses and talks are shared among institutions and individuals who are located in different places. The Telepresence tool, developed by Eafit and Universidad del Quindío, permits course sharing among the institutions. Instructors from one institution can teach students of the other one, thereby sharing the positive features of each course. In this paper, we present the recent improvements of the Telepresence tool. We also report on the use of the tool in a Multi-Variable Calculus course, designed in accordance to the Teaching for Understanding (TFU) pedagogical framework. © 2010 Springer Science+Business Media B.V.Ítem Distance interaction in education processes using a Telepresence tool(SPRINGER-VERLAG BERLIN, 2010-01-01) Giraldo, F.; Jiménez, A.; Trefftz, H.; Restrepo, J.; Esteban, P.; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las ComunicacionesDistance interaction among educational communities is becoming increasingly important. Courses and talks are shared among institutions and individuals who are located in different places. The Telepresence tool, developed by Eafit and Universidad del Quindío, permits course sharing among the institutions. Instructors from one institution can teach students of the other one, thereby sharing the positive features of each course. In this paper, we present the recent improvements of the Telepresence tool. We also report on the use of the tool in a Multi-Variable Calculus course, designed in accordance to the Teaching for Understanding (TFU) pedagogical framework. © 2010 Springer Science+Business Media B.V.Ítem Distance interaction in education processes using a Telepresence tool(SPRINGER-VERLAG BERLIN, 2010-01-01) Giraldo, F.; Jiménez, A.; Trefftz, Helmuth; Restrepo, J.; Esteban, Pedro Vicente; Giraldo, F.; Jiménez, A.; Trefftz, Helmuth; Restrepo, J.; Esteban, Pedro Vicente; Universidad EAFIT. Departamento de Ciencias; Educación Matemática e HistoriaDistance interaction among educational communities is becoming increasingly important. Courses and talks are shared among institutions and individuals who are located in different places. The Telepresence tool, developed by Eafit and Universidad del Quindío, permits course sharing among the institutions. Instructors from one institution can teach students of the other one, thereby sharing the positive features of each course. In this paper, we present the recent improvements of the Telepresence tool. We also report on the use of the tool in a Multi-Variable Calculus course, designed in accordance to the Teaching for Understanding (TFU) pedagogical framework. © 2010 Springer Science+Business Media B.V.Ítem Probabilistic extension to the concurrent constraint factor oracle model for music improvisation(Asociacion Espanola de Inteligencia Artificial, 2016-01-01) Toro, M.; Toro, M.; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las ComunicacionesWe can program a Real-Time (RT) music improvisation system in C++ without a formal semantic or we can model it with process calculi such as the Non-deterministic Timed Concurrent Constraint (ntcc) calculus. “A Concurrent Constraints Factor Oracle (FO) model for Music Improvisation” (Ccfomi) is an improvisation model specified on ntcc. Since Ccfomi improvises non-deterministically, there is no control on choices and therefore little control over the sequence variation during the improvisation. To avoid this, we extended Ccfomi using the Probabilistic Non-deterministic Timed Concurrent Constraint calculus. Our extension to Ccfomi does not change the time and space complexity of building the FO, thus making our extension compatible with RT. However, there was not a ntcc interpreter capable of RT to execute Ccfomi. We developed Ntccrt -a RT capable interpreter for ntcc- and we executed Ccfomi on Ntccrt. In the future, we plan to extend Ntccrt to execute our extension to Ccfomi. © IBERAMIA and the authors.Ítem Technological tools to learn calculus(Institute of Electrical and Electronics Engineers Inc., 2015-12-02) Gómez, G.P.P.; Restrepo, C.M.Z.; Duarte, P.V.E.; Rivera, L.F.Z.; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las ComunicacionesOnline learning tools have allowed professors to carry out their classes in an interactive way, synchronic as well as asynchronic, giving them the opportunity to explore from different points of view specific themes or concepts, achieving greater dynamism in their classes through the active participation of students. This article presents the results of the implementation of an software tool for massive use designed with the objective of allowing Engineering students to strengthen their basic mathematical knowledge as well as to improve their results in courses such as Calculus I and Mathematics I. These courses are part of the first semesters of the syllabus for all undergraduate programs of the School of Engineering, and are basic courses in the formation of an engineer at Universidad EAFIT (Medellin, Colombia). This software tool for massive use allows students to self-diagnose, to solve exercises with different levels of complexity and difficulty, to visualize academic contents such as video classes and virtual resources, and to know their evolution in the understanding of basic concepts in calculus. On one hand, this facilitates the beginning of their studies at the university. On the other, it gives the professor an initial diagnose of the level students have to start the course so that continuous analytics can be performed based on the learning process of the student. Furthermore, this article shows the results of a comparative analysis done to two groups of students, a Control group and an Experimental group, that took Calculus I as part of their undergraduate studies. The experiment lasted two months with testing done at the beginning and at the end of the course. The objective was to register the level of knowledge acquired by the students and compare the differences between the two groups, control and experimental. The testing also allowed the progress of the student between tests to be measured, taking into account that the experimental group had the opportunity to explore the platform during this two-month period. Therefore, the analysis performed served to gather information useful for evaluating the effectiveness of the proposed system in the learning process of the students at the University. © 2015 IEEE.Ítem Technological tools to learn calculus(Institute of Electrical and Electronics Engineers Inc., 2015-12-02) Gómez, G.P.P.; Restrepo, C.M.Z.; Duarte, P.V.E.; Rivera, L.F.Z.; Gómez, G.P.P.; Restrepo, C.M.Z.; Duarte, P.V.E.; Rivera, L.F.Z.; Universidad EAFIT. Departamento de Ciencias; Educación Matemática e HistoriaOnline learning tools have allowed professors to carry out their classes in an interactive way, synchronic as well as asynchronic, giving them the opportunity to explore from different points of view specific themes or concepts, achieving greater dynamism in their classes through the active participation of students. This article presents the results of the implementation of an software tool for massive use designed with the objective of allowing Engineering students to strengthen their basic mathematical knowledge as well as to improve their results in courses such as Calculus I and Mathematics I. These courses are part of the first semesters of the syllabus for all undergraduate programs of the School of Engineering, and are basic courses in the formation of an engineer at Universidad EAFIT (Medellin, Colombia). This software tool for massive use allows students to self-diagnose, to solve exercises with different levels of complexity and difficulty, to visualize academic contents such as video classes and virtual resources, and to know their evolution in the understanding of basic concepts in calculus. On one hand, this facilitates the beginning of their studies at the university. On the other, it gives the professor an initial diagnose of the level students have to start the course so that continuous analytics can be performed based on the learning process of the student. Furthermore, this article shows the results of a comparative analysis done to two groups of students, a Control group and an Experimental group, that took Calculus I as part of their undergraduate studies. The experiment lasted two months with testing done at the beginning and at the end of the course. The objective was to register the level of knowledge acquired by the students and compare the differences between the two groups, control and experimental. The testing also allowed the progress of the student between tests to be measured, taking into account that the experimental group had the opportunity to explore the platform during this two-month period. Therefore, the analysis performed served to gather information useful for evaluating the effectiveness of the proposed system in the learning process of the students at the University. © 2015 IEEE.