Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Examinar por materia

Examinando por Materia "Air transportation"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Airline choice model for an international round-trip flight considering outbound and return flight schedules
    (Warsaw University of Technology, 2020-01-01) Munoz C.; Laniado H.; Córdoba J.; Universidad EAFIT. Escuela de Ciencias; Modelado Matemático
    This paper quantified the impact of outbound and return flight schedule preferences on airline choice for international trips. Several studies have used airline choice data to identify preferences and trade-offs of different air carrier service attributes, such as travel time, fare and flight schedule. However, estimation of the effect return flight schedules have on airline choice for an international round-trip flight has not yet been studied in detail. Therefore, this study introduces attributes related to return flight characteristics and round-trip flight schedule interaction into the airline choice models, which have not previously been reported in the literature. We developed a stated preference survey that includes round-trip fares based on flight schedule combinations and the number of days prior to departure fares was purchased. We applied modelling techniques using a set of stated preference data. A mixed logit model was tested for the presence of heterogeneity in passengers' preferences. Our results indicated that models with attributes related to return flight and its interaction with outbound flight attributes have a superior fit compared with models only based on attributes reported in the literature review. The model found shows that airfare, travel time, arrival preference schedule in the outward journey, departure preference in the return journey and the schedule combination of round-trip flight are significantly affecting passenger choice behaviour in international round-trip flights. Sensitivity analysis of airline service characteristics and their marketing implications are conducted. The analysis reports seven policies with the greatest impact on each airline choice probabilities. It shows that by reducing travel time and airfare and by adopting an afternoon and night schedule preference for outbound and return flight, respectively, the highest probability on airline choice would be reached. This research contributes to the current literature by enhancing the understanding of how passengers choose airlines, considering both outbound and inbound journey characteristics. Thus, this study provides an analytical tool designed to provide a better understanding of international round-trip flight demand determinants and support carrier decisions. © 2020 Warsaw University of Technology. All rights reserved.
  • No hay miniatura disponible
    Ítem
    Airline choice model for an international round-trip flight considering outbound and return flight schedules
    (Warsaw University of Technology, 2020-01-01) Munoz C.; Laniado H.; Córdoba J.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Estudios en Mantenimiento (GEMI)
    This paper quantified the impact of outbound and return flight schedule preferences on airline choice for international trips. Several studies have used airline choice data to identify preferences and trade-offs of different air carrier service attributes, such as travel time, fare and flight schedule. However, estimation of the effect return flight schedules have on airline choice for an international round-trip flight has not yet been studied in detail. Therefore, this study introduces attributes related to return flight characteristics and round-trip flight schedule interaction into the airline choice models, which have not previously been reported in the literature. We developed a stated preference survey that includes round-trip fares based on flight schedule combinations and the number of days prior to departure fares was purchased. We applied modelling techniques using a set of stated preference data. A mixed logit model was tested for the presence of heterogeneity in passengers' preferences. Our results indicated that models with attributes related to return flight and its interaction with outbound flight attributes have a superior fit compared with models only based on attributes reported in the literature review. The model found shows that airfare, travel time, arrival preference schedule in the outward journey, departure preference in the return journey and the schedule combination of round-trip flight are significantly affecting passenger choice behaviour in international round-trip flights. Sensitivity analysis of airline service characteristics and their marketing implications are conducted. The analysis reports seven policies with the greatest impact on each airline choice probabilities. It shows that by reducing travel time and airfare and by adopting an afternoon and night schedule preference for outbound and return flight, respectively, the highest probability on airline choice would be reached. This research contributes to the current literature by enhancing the understanding of how passengers choose airlines, considering both outbound and inbound journey characteristics. Thus, this study provides an analytical tool designed to provide a better understanding of international round-trip flight demand determinants and support carrier decisions. © 2020 Warsaw University of Technology. All rights reserved.
  • No hay miniatura disponible
    Ítem
    Meteorological Risk Early Warning System for Air Operations
    (Institute of Electrical and Electronics Engineers Inc., 2019-01-01) Florez Zuluaga J.A.; David Ortega Pabon J.; Vargas Bonilla J.F.; Quintero Montova O.L.; Florez Zuluaga J.A.; David Ortega Pabon J.; Vargas Bonilla J.F.; Quintero Montova O.L.; Universidad EAFIT. Departamento de Ciencias; Modelado Matemático
    Today, airspace control has the challenge of merging information from independent and heterogeneous systems in order to minimize air safety risks and facilitate the decision-making process. One of the main risks for air operations is meteorology because convective formations like Torre cumulus or cumulonimbus could generate several dangerous phenomena such as icing, wind gusts, and thunderstorms, among others, that can affect the air operation safety. Based on previous works that allow the automatic identification of convective phenomena through the fusion of multispectral satellite images and other sources as winds and Meteorological Aerodrome Report (METAR), and establishing a common georeferenced coordinates system like WGS-84, for all sources, it can generate a system that could calculate early alerts about hazardous weather conditions in the aircrafts proximality for air traffic control system. For this, a meteorological analysis system can generate information about convective clouds calculating area, heights, temperatures, risk level and position of the meteorological formation. Parallelly the convective cloud is surrounded by optimal elliptical forms centered on the convective formation, generating a meteorological object. On the other hand, there is a system responsible for monitoring the information of the surveillance sensors. This system fused the air traffic sensors available like primary and secondary radar signals and ADS-B sensors in a unique WGS-84 coordinates system. Finally, in a georeferenced raster-Type graphing system or in a Geographic Information System (GIS), the meteorological and surveillance information is correlated projecting the track routes generates by air traffic system and traces generated by meteorological objects in order to establish times and high-risk areas, early. With this information, the Air Traffic Controller (ATC) system users, could minimize risk areas and reorganize the air traffic flow. This methodology then, would contribute to the decision-making process of ATC, facilitating the air flow reorganization and minimizing meteorological risks. For the development of this project a cooperative experimental methodology by subsystems was used. It was based on an operational knowledge and normal operating procedures of the Colombian Air Force, integrated with radar tracking technologies that implement decision trees. These alerts allow the air traffic controller to assess the risk and in accordance with the evaluation, if necessary, reorganize the air traffic flow for a specific area before the aircraft enter areas of bad weather mitigating the risks. © 2019 IEEE.

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias