Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Examinar por materia

Examinando por Materia "AGDA (Lenguaje de programación funcional)"

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Category theory applied to functional programming
    (Universidad EAFIT, 2014) Villa Isaza, Juan Pedro; Sicard Ramírez, Andrés
    We study some of the applications of category theory to functional programming, particularly in the context of the Haskell functional programming language, and the Agda dependently typed functional programming language and proof assistant -- More specifically, we describe and explain the concepts of category theory needed for conceptualizing and better understanding algebraic data types and folds, functors, monads, and parametrically polymorphic functions -- With this purpose, we give a detailed account of categories, functors and endofunctors, natural transformations, monads and Kleisli triples, algebras and initial algebras over endofunctors, among others -- In addition, we explore all of these concepts from the standpoints of categories and programming in Haskell, and, in some cases, Agda -- In other words, we examine functional programming through category theory
  • No hay miniatura disponible
    Ítem
    Una formalización del sistema de los números reales
    (Universidad EAFIT, 2017) Acevedo Acosta, Jorge Ohel; Echeverri Jurado, José Luis; Sicard Ramírez, Andrés
  • No hay miniatura disponible
    Ítem
    Reconstructing propositional proofs in type theory
    (Universidad EAFIT, 2017) Prieto Cubides, Jonathan Steven; Sicard Ramírez, Andrés
    We describe a syntactical proof-reconstruction approach to verify derivations generated by Metis prover to theorems in classical propositional logic -- To verify such derivations, we formalize in type theory each inference rule of the Metis reasoning -- We developed a tool jointly with two Agda libraries to translate Metis derivations to Agda proof-terms -- These developments allowed us to type-check with Agda, Metis derivations step-by-step

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias