Documentos de conferencia
URI permanente para esta colección
Examinar
Examinando Documentos de conferencia por Materia "E-learning"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Collaborative virtual environments for teaching physics(SPRINGER, 2007-01-01) Giraldo, F.; Rojas, Á.M.J.; Esteban, P.; Trefftz, H.; Giraldo, F.; Rojas, Á.M.J.; Esteban, P.; Trefftz, H.; Universidad EAFIT. Departamento de Ciencias; Educación Matemática e HistoriaEafit University created a Telepresence application for distance education. It supports bidirectional audio and video and a shared virtual environment that allows the instructor and students to manipulate virtual objects in a collaborative manner, thereby reinforcing the learning process. In this paper we report the experience of creating new contents and deploying the tool in a Physics course at Universidad del Quindío. The tool was improved an extended in order to include new functionality and make it easier for development teams to create new content. Teaching for Understanding was used as pedagogical framework for course creation and also as a guide to develop the interviews that were used to capture user's perceptions and to asses the improvements in the learning process. The results showed that the use of the tool had a positive impact on the students' understanding of the topics at hand. © 2007 Springer.Ítem Distance interaction in education processes using a Telepresence tool(SPRINGER-VERLAG BERLIN, 2010-01-01) Giraldo, F.; Jiménez, A.; Trefftz, Helmuth; Restrepo, J.; Esteban, Pedro Vicente; Giraldo, F.; Jiménez, A.; Trefftz, Helmuth; Restrepo, J.; Esteban, Pedro Vicente; Universidad EAFIT. Departamento de Ciencias; Educación Matemática e HistoriaDistance interaction among educational communities is becoming increasingly important. Courses and talks are shared among institutions and individuals who are located in different places. The Telepresence tool, developed by Eafit and Universidad del Quindío, permits course sharing among the institutions. Instructors from one institution can teach students of the other one, thereby sharing the positive features of each course. In this paper, we present the recent improvements of the Telepresence tool. We also report on the use of the tool in a Multi-Variable Calculus course, designed in accordance to the Teaching for Understanding (TFU) pedagogical framework. © 2010 Springer Science+Business Media B.V.Ítem Technological tools to learn calculus(Institute of Electrical and Electronics Engineers Inc., 2015-12-02) Gómez, G.P.P.; Restrepo, C.M.Z.; Duarte, P.V.E.; Rivera, L.F.Z.; Gómez, G.P.P.; Restrepo, C.M.Z.; Duarte, P.V.E.; Rivera, L.F.Z.; Universidad EAFIT. Departamento de Ciencias; Educación Matemática e HistoriaOnline learning tools have allowed professors to carry out their classes in an interactive way, synchronic as well as asynchronic, giving them the opportunity to explore from different points of view specific themes or concepts, achieving greater dynamism in their classes through the active participation of students. This article presents the results of the implementation of an software tool for massive use designed with the objective of allowing Engineering students to strengthen their basic mathematical knowledge as well as to improve their results in courses such as Calculus I and Mathematics I. These courses are part of the first semesters of the syllabus for all undergraduate programs of the School of Engineering, and are basic courses in the formation of an engineer at Universidad EAFIT (Medellin, Colombia). This software tool for massive use allows students to self-diagnose, to solve exercises with different levels of complexity and difficulty, to visualize academic contents such as video classes and virtual resources, and to know their evolution in the understanding of basic concepts in calculus. On one hand, this facilitates the beginning of their studies at the university. On the other, it gives the professor an initial diagnose of the level students have to start the course so that continuous analytics can be performed based on the learning process of the student. Furthermore, this article shows the results of a comparative analysis done to two groups of students, a Control group and an Experimental group, that took Calculus I as part of their undergraduate studies. The experiment lasted two months with testing done at the beginning and at the end of the course. The objective was to register the level of knowledge acquired by the students and compare the differences between the two groups, control and experimental. The testing also allowed the progress of the student between tests to be measured, taking into account that the experimental group had the opportunity to explore the platform during this two-month period. Therefore, the analysis performed served to gather information useful for evaluating the effectiveness of the proposed system in the learning process of the students at the University. © 2015 IEEE.Ítem Understanding math concepts through computer-modeled virtual objects(SPRINGER, 2008-01-01) Trujillo, J.; Esteban, P.; Montoya, E.; Giraldo, R.; Montoya, A.; Mejía, J.; Trefftz, H.; Trujillo, J.; Esteban, P.; Montoya, E.; Giraldo, R.; Montoya, A.; Mejía, J.; Trefftz, H.; Universidad EAFIT. Departamento de Ciencias; Educación Matemática e HistoriaInformation and Communication Technologies (ICT) can be used in order to motivate students to establish links between the classroom material and real life situations by modeling those situations through the course equations. This article describes the results of an experience involving a group of Multivariable Calculus at Eafit University. 3DUniversal is the program developed for the experience, which runs on Pocket PC. It allows students to interact and communicate inside the classroom. At each stage of the experience, students were asked to establish links between the classroom-covered material and real objects in their environment. © Springer Science+Business Media B.V. 2008.