Documentos de conferencia
URI permanente para esta colección
Examinar
Examinando Documentos de conferencia por Materia "Computer vision"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Ítem Hessian eigenfunctions for triangular mesh parameterization(SciTePress, 2016-02-27) Mejia, D.; Ruiz OE; Cadavid, C.; Mejia, D.; Ruiz OE; Cadavid, C.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesHessian Locally Linear Embedding (HLLE) is an algorithm that computes the nullspace of a Hessian functional H for Dimensionality Reduction (DR) of a sampled manifold M. This article presents a variation of classic HLLE for parameterization of 3D triangular meshes. Contrary to classic HLLE which estimates local Hessian nullspaces, the proposed approach follows intuitive ideas from Differential Geometry where the local Hessian is estimated by quadratic interpolation and a partition of unity is used to join all neighborhoods. In addition, local average triangle normals are used to estimate the tangent plane TxM at x ? M instead of PCA, resulting in local parameterizations which reflect better the geometry of the surface and perform better when the mesh presents sharp features. A high frequency dataset (Brain) is used to test our algorithm resulting in a higher rate of success (96.63%) compared to classic HLLE (76.4%). © Copyright 2016 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved.