Artículos
URI permanente para esta colección
Examinar
Examinando Artículos por Materia "Age Factors"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Material properties of mandibular cortical bone in the American alligator, Alligator mississippiensis(ELSEVIER SCIENCE INC, 2010-03-01) Zapata, Uriel; Metzger, Keith; Wang, Qian; Elsey, Ruth M.; Ross, Callum F.; Dechow, Paul C.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)This study reports the elastic material properties of cortical bone in the mandible of juvenile Alligator mississippiensis obtained by using an ultrasonic wave technique. The elastic modulus, the shear modulus, and Poisson's ratio were measured on 42 cylindrical Alligator bone specimens obtained from the lingual and facial surfaces of 4 fresh Alligator mandibles. The data suggest that the elastic properties of alligator mandibular cortical bone are similar to those found in mammals and are orthotropic. The properties most resemble those found in the cortex of mammalian postcranial long bones where the bone is most stiff in one direction and much less stiff in the two remaining orthogonal directions. This is different from cortical bone found in the mandibles of humans and some monkeys, where the bone has greatest stiffness in one direction, much less stiffness in another direction, and an intermediate amount in the third orthogonal direction. This difference suggests a relationship between levels of orthotropy and bending stress. The comparability of these elastic moduli to those of other vertebrates suggest that the high bone strain magnitudes recorded from the alligator mandible in vivo are not attributable to a lower stiffness of alligator mandibular bone. © 2009 Elsevier Inc.Ítem Reliability of maximum bite force measurements in age-varying populations(WILEY-BLACKWELL PUBLISHING, INC, 2009-11-01) RoldÁn, S.; Buschang, P.H.; Isaza Saldarriaga, J.F.; Throckmorton, G.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)Summary In order for bite forces to be used clinically, they must be reliable. While bite force transducers are accurate and precise during bench tests, widely varying reliabilities of intra-oral bite forces have been reported when measured in human subjects. Because few studies have reported total reliability, the clinical use of intra-oral bite forces measurements remains questionable. The purposes of this study were to (i) estimate total reliability, including both within- and between-session reliabilities, of repeated maximum incisor and molar bite force measurements and (ii) demonstrate how extraneous variation affects reliability by comparing estimates for which the effects of age have and have not been controlled. A sample of 28 healthy subjects with Class I normal occlusion (seven subjects in each of four age groups: 5, 8, 11 and 14 years) performed two sessions approximately 90 min apart. Each session consisted of three maximum voluntary bites at three bite positions (incisor and right and left molars). For each bite position, between-subject variance (true variance), between-session variance and within-session variance were calculated using Multilevel modelling procedures. The variances were used to estimate between-session reliabilities, within-session reliabilities and total reliabilities. Within-session reliabilities were substantially higher than between-session reliabilities, which in turn was higher than total reliabilities at all bite positions. Reliabilities were highest at the incisor bite position. Not controlling for age effects substantially overestimated total reliability at all bite positions. After controlling for age effects, total reliabilities of repeated maximum bite forces were low to moderate. © 2009 Blackwell Publishing Ltd.