Maestría en Ciencias de los Datos y Analítica (tesis)
URI permanente para esta colección
Examinar
Examinando Maestría en Ciencias de los Datos y Analítica (tesis) por Materia "ADMINISTRACIÓN DE PORTAFOLIO"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Ítem Aprendizaje reforzado profundo para la administración de portafolios de renta fija(Universidad EAFIT, 2023) Mejía Estrada, David; Almonacid Hurtado, Paula MaríaThis paper applies deep reinforced learning techniques to the management of fixed income investment portfolios, specifically sovereign securities issued by the Colombian government. The period of analysis covers seven years, from January 2015 to December 2022. We find that it is possible to generate profitability and achieve efficient risk management because of the trading strategies that deep reinforced learning models foresee more convenient given certain market conditions and of each of the securities, such as their implied risk in metrics like DV01, Duration and Convexity. Finally, this study contributes to the field of machine learning and artificial intelligence applications on investment portfolio management, with a relatively new focus on the fixed income market in general, consolidating itself as one of the first works to apply reinforcement learning techniques to the Colombian public debt market.