Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Vasquez-Correa, J. C."

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Evaluation of wavelet measures on automatic detection of emotion in noisy and telephony speech signals
    (IEEE, 2014-01-01) Vasquez-Correa, J. C.; Garcia, N.; Vargas-Bonilla, J. F.; Orozco-Arroyave, J. R.; Arias-Londono, J. D.; Lucia Quintero M, O.; Vasquez-Correa, J. C.; Garcia, N.; Vargas-Bonilla, J. F.; Orozco-Arroyave, J. R.; Arias-Londono, J. D.; Lucia Quintero M, O.; Universidad EAFIT. Departamento de Ciencias; Modelado Matemático
    Detection of emotion in humans from speech signals is a recent research field. One of the scenarios where this field has been applied is in situations where the human integrity and security are at risk. In this paper we are propossing a set of features based on the Teager energy operator, and several entropy measures obtained from the decomposition signals from discrete wavelet transform to characterize different types of negative emotions such as anger, anxiety, disgust, and desperation. The features are measured in three different conditions: (1) the original speech signals, (2) the signals that are contaminated with noise, or are affected by the presence of a phone channel, and (3) the signals that are obtained after processing using an algorithm for Speech Enhancement based on Karhunen-Love Transform. According to the results, when the speech enhancement is applied, the detection of emotion in speech is increased in up to 22% compared to results obtained when the speech signal is highly contaminated with noise. © 2014 IEEE.

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies