Examinando por Autor "Rivera, M.J."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem On operator ideals defined by a reflexive Orlicz sequence space(Departamento de Matematicas, Universidad Catolica del Norte, 2006-01-01) López Molina, J.A.; Rivera, M.J.; Loaiza, G.; López Molina, J.A.; Rivera, M.J.; Loaiza, G.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesClassical theory of tensornorms and operator ideals studies mainly those defined by means of sequence spaces lp. Considering Orlicz sequence spaces as natural generalization of lp spaces, in a previous paper [12] an Orlicz sequence space was used to define a tensornorm, and characterize minimal and maximal operator ideals associated, by using local techniques. Now, in this paper we give a new characterization of the maximal operator ideal to continue our analysis of some coincidences among such operator ideals. Finally we prove some new metric properties of tensornorm mentioned above. © 2007 Universidad Católica del Norte, Departamento de Matemáticas.Ítem Some applications of the lattice finite representability in spaces of measurable functions(Scientific and Technical research Council of Turkey - TUBITAK/Turkiye Bilimsel ve Teknik Arastirma Kurumu, 2001-01-01) Gómez Palacio, P.; López Molina, J.A.; Rivera, M.J.; Gómez Palacio, P.; López Molina, J.A.; Rivera, M.J.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesWe study the lattice finite representability of the Bochner space L p(P1, Lq(P2)) in lp{lq}, 1 = p, q < 8, and then we characterize the ideal of the operators which factor through a lattice homomorphism between L8(µ) and Lp(µ) and Lp(µ1, Lq(µ2)). © Tübitak.Ítem Ultraproducts of real interpolation spaces between L p -spaces(SPRINGER, 2006-06-01) López Molina, J.A.; Puerta, M.E.; Rivera, M.J.; López Molina, J.A.; Puerta, M.E.; Rivera, M.J.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesLet {(L p0 (Od, µd), L p1 (Od, µd)) , d e D}, 1 = p0 < p1 < 8, be a family of compatible couples of L p -spaces. We show that, given a countably incomplete ultrafilter U in D, the ultraproduct (L p0 (Od, µd), L p1 (Od, µd))? q)U , 0< ? < 1,1 = q < 8 of interpolation spaces defined by the real method is isomorphic to the direct sum of an interpolation space of type (L p0 (O1, ? 1 L p1 (O1, ? 1)) ?, q , an intermediate Köthe space between l p0 (O2, ? 2) and l p1 (O2, ? 2), (O2, ? 2)being a purely atomic measure space, and a Köthe function space K(O3) defined on some purely non atomic measure space (O3, ? 3) in such a way that O2 O3 ? ?. © Springer-Verlag Berlin Heidelberg 2006.