Examinando por Autor "Peris-Fajarnés, Guillermo"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Gabriel-constrained Parametric Surface Triangulation(2008-10) Ruíz, Óscar E.; Cadavid, Carlos; Lalinde, Juan G.; Serrano, Ricardo; Peris-Fajarnés, Guillermo; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThe Boundary Representation of a 3D manifold contains FACES (connected subsets of a parametric surface S : R2−R3) -- In many science and engineering applications it is cumbersome and algebraically difficult to deal with the polynomial set and constraints (LOOPs) representing the FACE -- Because of this reason, a Piecewise Linear (PL) approximation of the FACE is needed, which is usually represented in terms of triangles (i.e. 2-simplices) -- Solving the problem of FACE triangulation requires producing quality triangles which are: (i) independent of the arguments of S, (ii) sensitive to the local curvatures, and (iii) compliant with the boundaries of the FACE and (iv) topologically compatible with the triangles of the neighboring FACEs -- In the existing literature there are no guarantees for the point (iii) -- This article contributes to the topic of triangulations conforming to the boundaries of the FACE by applying the concept of parameter independent Gabriel complex, which improves the correctness of the triangulation regarding aspects (iii) and (iv) -- In addition, the article applies the geometric concept of tangent ball to a surface at a point to address points (i) and (ii) -- Additional research is needed in algorithms that (i) take advantage of the concepts presented in the heuristic algorithm proposed and (ii) can be proved correctÍtem Simulation of the evolution of floor covering ceramic tiles during the firing(Springer Verlag, 2013-04) Peris-Fajarnés, Guillermo; Defez, Beatriz; Serrano, Ricardo; Ruíz, Óscar E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn the context of the firing of ceramic tiles the problem of simulating the final shape of the body is relevant because several defects can occur and the tile can be rejected if the conditions of the firing are inadequate for the geometry and materials of the tile -- The existing literature on this problem indicates that previous works present limitations in aspects such as not using a model characteristic of ceramics at high temperatures and oversimplifying the problem -- As a response to such shortcomings, this article presents a simulation with a 3-dimensional Norton’s model, which overcomes the difficulties because it is characteristic of ceramics at high temperatures -- The results of our simulated experiments show advantages with respect to the identification of the mechanisms that contribute to the final shape of the body -- Our work is able to divide the history of temperatures in stages where the evolution of the thermal, elastic and creep deformations is simplified and meaningful -- That is achieved because our work found that curvature is the most descriptive parameter of the simulation, the most important contribution of this article -- Future work is to be realized in the creation of a model that takes into account that the shrinkage is dependent on the history of temperatures -- The main shortcoming of the paper is the lack of physical experiments to corroborate the simulations