Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Paniagua, J.G."

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    From artificial intelligence to deep learning in bio-medical applications
    (Springer, 2020-01-01) Montoya, O.L.Q.; Paniagua, J.G.
    Since their introduction in late 80s, convolutional neural networks and auto-encoder architectures have shown to be powerful for automatic feature extraction and information simplification. Using convolution kernels from image processing in 2D and 3D spaces for the stage by stage features retrieval processes, allows the architecture to be as flexible as the designer wants, considering that this is not a lucky fact. With the recent ten years of technological progress now we can compute and train those architectures and they have faced so many challenges for applications originating the most famous CNN architectures. This chapter presents an author position related to the artificial intelligence field and machine learning/deep learning appearance in the scientific world scene describing hastily the basis for each one and later, focusing on medical applications most of the socialized on the Annual IEEE Engineering in Medicine and Biology Society conference held in Hawaii in July 2018. While addressing the medical applications from cardiovascular to cancer diagnosis, we will briefly describe the architectures and discuss some features. Finally, we will present a contribution to the deep learning by introducing a new architecture called Convolutional Laguerre-Gauss Network with a kernel based on a spiral phase function ranging from 0 to 2p and a toroidal amplitude band-pass filter, known as the Laguerre-Gauss transform. © Springer Nature Switzerland AG 2020.

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias