Examinando por Autor "Ossa EA"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem The natural armors of fish: A comparison of the lamination pattern and structure of scales(ELSEVIER SCIENCE BV, 2017-09-01) Murcia S; Lavoie E; Linley T; Devaraj A; Ossa EA; Arola D; Murcia S; Lavoie E; Linley T; Devaraj A; Ossa EA; Arola D; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaFish scales exhibit a unique balance of flexibility, strength and toughness, which is essential to provide protection without encumbering locomotion. Although the mechanical behavior and structure of this natural armor are of recent interest, a comparison of these qualities from scales of different fish species has not been reported. In this investigation the armor of fish with different locomotion, size and protection needs were analyzed. Scales from the Arapaima gigas, the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio) were compared in terms of the stacking sequence of individual plies and their microstructure. The scales were also compared with respect to anatomical position to distinguish site-specific functional differences. Results show that the lamination sequence of plies for the carp and tarpon exhibit a Bouligand structure with relative rotation of 75 degrees between consecutive plies. The arapaima scales exhibit a cross-ply structure, with 90 degrees rotation between adjacent plies. In addition, results indicate that the volume fraction of reinforcement, the number of plies and the variations in thickness with anatomical position are unique amongst the three fish. These characteristics should be considered in evaluations focused on the mechanical behavior.Ítem Time dependent deformation behavior of dentin(PERGAMON-ELSEVIER SCIENCE LTD, 2017-04-01) Montoya C; Arola D; Ossa EA; Montoya C; Arola D; Ossa EA; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaObjective The viscoelastic behavior of dentin and its ability to undergo time dependent deformation are considered to be important to oral functions and its capacity to resist fracture. There are spatial variations in the microstructure of dentin within the crown, which could be important to the viscous behavior. However, a spatially resolved description for the viscoelastic behavior of coronal dentin has not been reported. Methods In this investigation spherical indentations were made in three regions of coronal dentin including the outer, middle and inner regions. Power law relations were developed to quantitatively describe the stress-strain responses of the tissue. Results Results showed that the deformation behavior was strongly dependent on the composition (mineral to collagen ratio) and microstructure (tubule density), which contributed to an increase in the rate of viscous deformation with increasing proximity to the pulp. Conclusions A model accounting for spatial variations in composition and microstructure was developed to describe the steady-state time dependent deformation behavior of coronal dentin, and a good agreement was found with the experimental results. © 2017 Elsevier Ltd