Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Osorno, María"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Determining the limits of geometrical tortuosity from seepage flow calculations in porous media
    (WILEY-VCH Verlag, 2014) Uribe, David; Osorno, María; Sivanesapillai, Rakulan; Steeb, Holger; Ruíz, Óscar; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAE
    Recent investigations have found a distinct correlation of effective properties of porous media to sigmoidal functions, where one axis is the Reynolds number Re and the other is the effective property dependent of Re, Θ = S (Re) -- One of these properties is tortuosity -- At very low Re (seepage flow), there is a characteristic value of tortuosity, and it is the upper horizontal asymptote of the sigmoidal function -- With higher values of Re (transient flow) the tortuosity value decreases, until a lower asymptote is reached (turbulent flow) -- Estimations of this parameter have been limited to the low Reynolds regime in the study of porous media -- The current state of the art presents different numerical measurements of tortuosity, such as skeletization, centroid binding, and arc length of streamlines -- These are solutions for the low Re regime. So far, for high Re, only the arc length of stream lines has been used to calculate tortuosity -- The present approach involves the simulation of fluid flow in large domains and high Re, which requires numerous resources, and often presents convergence problems -- In response to this, we propose a geometrical method to estimate the limit of tortuosity of porous media at Re → ∞, from the streamlines calculated at low Re limit -- We test our method by calculating the tortuosity limits in a fibrous porous media, and comparing the estimated values with numerical benchmark results -- Ongoing work includes the geometric estimation of different intrinsic properties of porous media
  • No hay miniatura disponible
    Ítem
    Estimation of large domain Al foam permeability by Finite Difference methods
    (WILEY-VCH Verlag, 2013) Osorno, María; Steeb, Holger; Uribe, David; Ruíz, Óscar; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAE
    Classical methods to calculate permeability of porous media have been proposed mainly for high density (e.g. granular) materials -- These methods present shortcomings in high porosity, i.e. high permeability media (e.g. metallic foams) -- While for dense materials permeability seems to be a function of bulk properties and occupancy averaged over the volume, for highly porous materials these parameters fail to predict it -- Several authors have attacked the problem by solving the Navier-Stokes equations for the pressure and velocity of a liquid flowing through a small domain (Ωs) of aluminium foam and by comparing the numerical results with experimental values (prediction error approx. 9%) -- In this article, we present calculations for much larger domains (ΩL) using the Finite Difference (FD) method, solving also for the pressure and velocity of a viscous liquid flowing through the Packed Spheres scenario -- The ratio Vol(ΩL)/Vol(Ωs) is around 103 -- The comparison of our results with the Packed Spheres example yields a prediction error of 5% for the intrinsic permeability -- Additionally, numerical permeability calculations have been performed for Al foam samples -- Our geometric modelling of the porous domain stems from 3D X-ray tomography, yielding voxel information, which is particularly appropriate for FD -- Ongoing work concerns the reduction in computing times of the FD method, consideration of other materials and fluids, and comparison with experimental data

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias