Examinando por Autor "Mejia D."
Mostrando 1 - 7 de 7
Resultados por página
Opciones de ordenación
Ítem Accelerated Thermal Simulation for Three-Dimensional Interactive Optimization of Computer Numeric Control Sheet Metal Laser Cutting(American Society of Mechanical Engineers (ASME), 2018-03-01) Mejia D.; Moreno A.; Arbelaiz A.; Posada J.; Ruiz-Salguero O.; Chopitea R.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEIn the context of computer numeric control (CNC)-based sheet metal laser cutting, the problem of heat transfer simulation is relevant for the optimization of CNC programs. Current physically based simulation tools use numeric or analytic algorithms which provide accurate but slow solutions due to the underlying mathematical description of the model. This paper presents: (1) an analytic solution to the laser heating problem of rectangular sheet metal for curved laser trajectories and convective cooling, (2) a graphics processing unit (GPU) implementation of the analytic solution for fast simulation of the problem, and (3) an integration within an interactive environment for the simulation of sheet metal CNC laser cutting. This analytic approach sacrifices the material removal effect of the laser cut in the favor of an approximated real-time temperature map on the sheet metal. The articulation of thermal, geometric, and graphic feedback in virtual manufacturing environments enables interactive redefinition of the CNC programs for better product quality, lower safety risks, material waste, and energy usage among others. The error with respect to finite element analysis (FEA) in temperature prediction descends as low as 3.5%. Copyright © 2018 by ASME.Ítem Hybrid geometry / topology based mesh segmentation for reverse engineering(PERGAMON-ELSEVIER SCIENCE LTD, 2018-06-01) Mejia D.; Ruiz-Salguero O.; Sánchez J.R.; Posada J.; Moreno A.; Cadavid C.A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEMesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmentations produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this significant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). In response to these limitations, this article presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topological criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and physical piece scans data. The experiments are successful, except for the well - known cases of topological cylinders, which require a user - introduced boundary along the cylinder generatrices. © 2018 Elsevier LtdÍtem Hybrid geometry / topology based mesh segmentation for reverse engineering(PERGAMON-ELSEVIER SCIENCE LTD, 2018-06-01) Mejia D.; Ruiz-Salguero O.; Sánchez J.R.; Posada J.; Moreno A.; Cadavid C.A.; Mejia D.; Ruiz-Salguero O.; Sánchez J.R.; Posada J.; Moreno A.; Cadavid C.A.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesMesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmentations produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this significant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). In response to these limitations, this article presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topological criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and physical piece scans data. The experiments are successful, except for the well - known cases of topological cylinders, which require a user - introduced boundary along the cylinder generatrices. © 2018 Elsevier LtdÍtem Mesh Segmentation and Texture Mapping for Dimensional Inspection inWeb3D(Association for Computing Machinery, Inc, 2017-01-01) Mejia D.; Sánchez J.R.; Segura Á.; Ruiz-Salguero O.; Posada J.; Cadavid C.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAETraditionally, the data generated by industrial metrology so.ware is stored as static reports that metrology experts produce for engineering and production departments. Nevertheless, industry demands new approaches that provide ubiquitous and real time access to overall geometry, manufacturing and other data. Web3D technologies can help to improve the traditional metrology methods and o.er new ways to convey this information in web-based continuous friendly manner. However, enriched point clouds may be massive, thus presenting transmission and display limitations. To partially overcome these limitations, this article presents an algorithm that computes efficient metrology textures, which are then transferred and displayed through Web3D standards. Texture coordinates are computed only once for the reference CAD mesh on the server using in-house thermal-based segmentation and Hessian-based parameterization algorithms. The metrology data is then encoded in a texture le, which becomes available instantly for interactive visual inspection through the Web3D platform. © 2017 ACM.Ítem Weighted area/angle distortion minimization for Mesh Parameterization(EMERALD GROUP PUBLISHING LIMITED, 2017-01-01) Mejia D.; Acosta D.A.; Ruiz-Salguero O.; Mejia D.; Acosta D.A.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Purpose: Mesh Parameterization is central to reverse engineering, tool path planning, etc. This work synthesizes parameterizations with un-constrained borders, overall minimum angle plus area distortion. This study aims to present an assessment of the sensitivity of the minimized distortion with respect to weighed area and angle distortions. Design/methodology/approach: A Mesh Parameterization which does not constrain borders is implemented by performing: isometry maps for each triangle to the plane Z = 0; an affine transform within the plane Z = 0 to glue the triangles back together; and a Levenberg-Marquardt minimization algorithm of a nonlinear F penalty function that modifies the parameters of the first two transformations to discourage triangle flips, angle or area distortions. F is a convex weighed combination of area distortion (weight: a with 0 = a = 1) and angle distortion (weight: 1 - a). Findings: The present study parameterization algorithm has linear complexity [O(n), n = number of mesh vertices]. The sensitivity analysis permits a fine-tuning of the weight parameter which achieves overall bijective parameterizations in the studied cases. No theoretical guarantee is given in this manuscript for the bijectivity. This algorithm has equal or superior performance compared with the ABF, LSCM and ARAP algorithms for the Ball, Cow and Gargoyle data sets. Additional correct results of this algorithm alone are presented for the Foot, Fandisk and Sliced-Glove data sets. Originality/value: The devised free boundary nonlinear Mesh Parameterization method does not require a valid initial parameterization and produces locally bijective parameterizations in all of our tests. A formal sensitivity analysis shows that the resulting parameterization is more stable, i.e. the UV mapping changes very little when the algorithm tries to preserve angles than when it tries to preserve areas. The algorithm presented in this study belongs to the class that parameterizes meshes with holes. This study presents the results of a complexity analysis comparing the present study algorithm with 12 competing ones. © Emerald Publishing Limited.Ítem Weighted area/angle distortion minimization for Mesh Parameterization(EMERALD GROUP PUBLISHING LIMITED, 2017-01-01) Mejia D.; Acosta D.A.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosPurpose: Mesh Parameterization is central to reverse engineering, tool path planning, etc. This work synthesizes parameterizations with un-constrained borders, overall minimum angle plus area distortion. This study aims to present an assessment of the sensitivity of the minimized distortion with respect to weighed area and angle distortions. Design/methodology/approach: A Mesh Parameterization which does not constrain borders is implemented by performing: isometry maps for each triangle to the plane Z = 0; an affine transform within the plane Z = 0 to glue the triangles back together; and a Levenberg-Marquardt minimization algorithm of a nonlinear F penalty function that modifies the parameters of the first two transformations to discourage triangle flips, angle or area distortions. F is a convex weighed combination of area distortion (weight: a with 0 = a = 1) and angle distortion (weight: 1 - a). Findings: The present study parameterization algorithm has linear complexity [O(n), n = number of mesh vertices]. The sensitivity analysis permits a fine-tuning of the weight parameter which achieves overall bijective parameterizations in the studied cases. No theoretical guarantee is given in this manuscript for the bijectivity. This algorithm has equal or superior performance compared with the ABF, LSCM and ARAP algorithms for the Ball, Cow and Gargoyle data sets. Additional correct results of this algorithm alone are presented for the Foot, Fandisk and Sliced-Glove data sets. Originality/value: The devised free boundary nonlinear Mesh Parameterization method does not require a valid initial parameterization and produces locally bijective parameterizations in all of our tests. A formal sensitivity analysis shows that the resulting parameterization is more stable, i.e. the UV mapping changes very little when the algorithm tries to preserve angles than when it tries to preserve areas. The algorithm presented in this study belongs to the class that parameterizes meshes with holes. This study presents the results of a complexity analysis comparing the present study algorithm with 12 competing ones. © Emerald Publishing Limited.Ítem Weighted area/angle distortion minimization for Mesh Parameterization(EMERALD GROUP PUBLISHING LIMITED, 2017-01-01) Mejia D.; Acosta D.A.; Ruiz-Salguero O.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEPurpose: Mesh Parameterization is central to reverse engineering, tool path planning, etc. This work synthesizes parameterizations with un-constrained borders, overall minimum angle plus area distortion. This study aims to present an assessment of the sensitivity of the minimized distortion with respect to weighed area and angle distortions. Design/methodology/approach: A Mesh Parameterization which does not constrain borders is implemented by performing: isometry maps for each triangle to the plane Z = 0; an affine transform within the plane Z = 0 to glue the triangles back together; and a Levenberg-Marquardt minimization algorithm of a nonlinear F penalty function that modifies the parameters of the first two transformations to discourage triangle flips, angle or area distortions. F is a convex weighed combination of area distortion (weight: a with 0 = a = 1) and angle distortion (weight: 1 - a). Findings: The present study parameterization algorithm has linear complexity [O(n), n = number of mesh vertices]. The sensitivity analysis permits a fine-tuning of the weight parameter which achieves overall bijective parameterizations in the studied cases. No theoretical guarantee is given in this manuscript for the bijectivity. This algorithm has equal or superior performance compared with the ABF, LSCM and ARAP algorithms for the Ball, Cow and Gargoyle data sets. Additional correct results of this algorithm alone are presented for the Foot, Fandisk and Sliced-Glove data sets. Originality/value: The devised free boundary nonlinear Mesh Parameterization method does not require a valid initial parameterization and produces locally bijective parameterizations in all of our tests. A formal sensitivity analysis shows that the resulting parameterization is more stable, i.e. the UV mapping changes very little when the algorithm tries to preserve angles than when it tries to preserve areas. The algorithm presented in this study belongs to the class that parameterizes meshes with holes. This study presents the results of a complexity analysis comparing the present study algorithm with 12 competing ones. © Emerald Publishing Limited.