Logotipo del repositorio
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Listar por
  • English
  • Español
  • Français
  • Português
  • Iniciar sesión
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Lalinde-Pulido J."

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Fast simulation of laser heating processes on thin metal plates with FFT using CPU/GPU hardware
    (Universitatea Politehnica Bucuresti, 2020-01-01) Mejia-Parra D.; Arbelaiz A.; Ruiz-Salguero O.; Lalinde-Pulido J.; Moreno A.; Posada J.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAE
    In flexible manufacturing systems, fast feedback from simulation solutions is required for effective tool path planning and parameter optimization. In the particular sub-domain of laser heating/cutting of thin rectangular plates, current state-of-the-art methods include frequency-domain (spectral) analytic solutions that greatly reduce the required computational time in comparison to industry standard finite element based approaches. However, these spectral solutions have not been presented previously in terms of Fourier methods and Fast Fourier Transform (FFT) implementations. This manuscript presents four different schemes that translate the problem of laser heating of rectangular plates into equivalent FFT problems. The presented schemes make use of the FFT algorithm to reduce the computational time complexity of the problem from O(M2N2) to O(MN log(MN)) (with M× N being the discretization size of the plate). The test results show that the implemented schemes outperform previous non-FFT approaches both in CPU and GPU hardware, resulting in 100× faster runs. Future work addresses thermal/stress analysis, non-rectangular geometries and non-linear interactions (such as material melting/ablation, convection and radiation heat transfer). © 2020 by the authors.
  • No hay miniatura disponible
    Ítem
    Fast simulation of laser heating processes on thin metal plates with FFT using CPU/GPU hardware
    (Universitatea Politehnica Bucuresti, 2020-01-01) Mejia-Parra D.; Arbelaiz A.; Ruiz-Salguero O.; Lalinde-Pulido J.; Moreno A.; Posada J.; Mejia-Parra D.; Arbelaiz A.; Ruiz-Salguero O.; Lalinde-Pulido J.; Moreno A.; Posada J.; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las Comunicaciones
    In flexible manufacturing systems, fast feedback from simulation solutions is required for effective tool path planning and parameter optimization. In the particular sub-domain of laser heating/cutting of thin rectangular plates, current state-of-the-art methods include frequency-domain (spectral) analytic solutions that greatly reduce the required computational time in comparison to industry standard finite element based approaches. However, these spectral solutions have not been presented previously in terms of Fourier methods and Fast Fourier Transform (FFT) implementations. This manuscript presents four different schemes that translate the problem of laser heating of rectangular plates into equivalent FFT problems. The presented schemes make use of the FFT algorithm to reduce the computational time complexity of the problem from O(M2N2) to O(MN log(MN)) (with M× N being the discretization size of the plate). The test results show that the implemented schemes outperform previous non-FFT approaches both in CPU and GPU hardware, resulting in 100× faster runs. Future work addresses thermal/stress analysis, non-rectangular geometries and non-linear interactions (such as material melting/ablation, convection and radiation heat transfer). © 2020 by the authors.
  • No hay miniatura disponible
    Ítem
    Scalable. Ad Hoc, Low Cost, Mobile, Online Laboratories
    (Institute of Electrical and Electronics Engineers Inc., 2018-01-01) Zapata-Rivera L.F.; Larrondo Petrie M.M.; Zalewski J.; Shockley J.; Costa J.; Lalinde-Pulido J.; Cristobal E.S.; Castro M.; Miguel Rodriguez A.; Saliah-Hassane H.; Universidad EAFIT. Departamento de Ingeniería de Sistemas; I+D+I en Tecnologías de la Información y las Comunicaciones
    The IEEE Educational Society has sponsored the development of IEEE-SA P1876™ standard for Networked Smart Learning Objects for Online Laboratories. This paper proposes two different architectures that integrate components to support educational online laboratories, through the use of xAPI statements to communicate between Remote Laboratory Management Systems, Virtual Learning Environments and Learning Analytics Generators. Proof of concept implementations of three scalable, ad hoc, low-cost, mobile, online laboratories that utilize the proposed distributed and centralized architectures are described, one fully integrated to an Actionable Data Book. The next steps would be to implement Mobile Massive Open Online Laboratories (M-MOOLs) within the context of Massive Open Online Courses (MOOCs), using the P1876™ standard under development. © 2018 IEEE.

Vigilada Mineducación

Universidad con Acreditación Institucional hasta 2026 - Resolución MEN 2158 de 2018

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar Sugerencias