Examinando por Autor "Jairo Villegas, G."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Algebra Lineal(Fondo Editorial Universidad EAFIT, 2012-01-01) Garcia, Orlando; Jairo Villegas, G.; Castano, JI; Garcia, Orlando; Jairo Villegas, G.; Castano, JI; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesLos autores de Álgebra lineal, a partir de su larga experiencia como profesores en diferentes temas del área de las matemáticas, presentan este texto que busca recoger las necesidades propias de los procesos académicosÍtem Bidomain model solution using the finite volume method(Hikari Ltd., 2016-01-01) Jairo Villegas, G.; Jorge Castaño, B.; Javier Gil, G.; Andrei González, G.; Jairo Villegas, G.; Jorge Castaño, B.; Javier Gil, G.; Andrei González, G.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesIn this paper we consider cardiac electrical activity through bidomain model, to describe the electrical behavior of cardiac tissue, based on current flow, electric potential distribution and conservation of charge. So we use the finite volume scheme built on rectangular meshes. Discretizing will focus on existing algorithms for elliptic and parabolic equations, with convergence guaranteed by the classical theory. © 2016 Jairo Villegas G.Ítem Taylor-petrov-galerkin method for the numerical solution of KdV equation(Hikari Ltd., 2016-01-01) Jairo Villegas, G.; Lida Buitrago, G.; Jorge Castaño, B.; Jairo Villegas, G.; Lida Buitrago, G.; Jorge Castaño, B.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesIn order to find the approximate solution of the KdV equation, we use the finite element method of Taylor-Petrov-Galerkin, in which discretization in the time variable is carried out using Taylor series expansion and for discretization in space are considered as test functions cubic B-splines and Legendre polynomials as weight functions. These functions are adequate in that they satisfy continuity, integrability and orthogonality required to apply the method. © 2015 Jairo Villegas G., Lida Buitrago G. and Jorge Castaño B.Ítem Wavelet-Petrov-Galerkin method for the numerical solution of the KdV equation(Hikari Ltd., 2012-01-01) Jairo Villegas, G.; Jorge Castaño, B.; Julio Duarte, V.; Esper Fierro, Y.; Jairo Villegas, G.; Jorge Castaño, B.; Julio Duarte, V.; Esper Fierro, Y.; Universidad EAFIT. Departamento de Ciencias; Matemáticas y AplicacionesThe development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaffard and Glowinski, among others. In this paper, we employ the Wavelet-Petrov-Galerkin method to obtain the numerical solution of the equation Korterweg-de Vries (KdV).