Examinando por Autor "Hincapié, D."
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Analysis of a generalized model for influenza including differential susceptibility due to immunosuppression(SPIE-INT SOC OPTICAL ENGINEERING, 2014-01-01) Hincapié, D.; Ospina, J.; Hincapié, D.; Ospina, J.; Universidad EAFIT. Departamento de Ciencias; Lógica y ComputaciónRecently, a mathematical model of pandemic influenza was proposed including typical control strategies such as antivirals, vaccination and school closure; and considering explicitly the effects of immunity acquired from the early outbreaks on the ulterior outbreaks of the disease. In such model the algebraic expression for the basic reproduction number (without control strategies) and the effective reproduction number (with control strategies) were derived and numerically estimated. A drawback of this model of pandemic influenza is that it ignores the effects of the differential susceptibility due to immunosuppression and the effects of the complexity of the actual contact networks between individuals. We have developed a generalized model which includes such effects of heterogeneity. Specifically we consider the influence of the air network connectivity in the spread of pandemic influenza and the influence of the immunosuppresion when the population is divided in two immune classes. We use an algebraic expression, namely the Tutte polynomial, to characterize the complexity of the contact network. Until now, The influence of the air network connectivity in the spread of pandemic influenza has been studied numerically, but not algebraic expressions have been used to summarize the level of network complexity. The generalized model proposed here includes the typical control strategies previously mentioned (antivirals, vaccination and school closure) combined with restrictions on travel. For the generalized model the corresponding reproduction numbers will be algebraically computed and the effect of the contact network will be established in terms of the Tutte polynomial of the network. © 2014 Copyright SPIE.Ítem Bases para la modelación de epidemias: El caso del síndrome respiratorio agudo severo en Canadá(Universidad Nacional de Colombia, 2007-01-01) Hincapié, D.; Ospina, J.; Hincapié, D.; Ospina, J.; Universidad EAFIT. Departamento de Ciencias; Lógica y ComputaciónObjective: Severe acute respiratory syndrome propagation in Canada during 2003 is analysed by means of simple models, comparing the influence of isolation measures on two epidemic waves. Methods: Deterministic susceptible-infected and susceptible-infected-removed models were used for both epidemic waves, using official published information. NLREG 6.2 was used for estimating deterministic parameters and analytical solutions were obtained with Maple 9 software. Dynamical indicators were obtained for the epidemic. Results: Suitable adjustment of the data was observed with both models, but smaller adjustment was observed during the second wave with the non- removed model. The highest rate of infectiousness was shown (35 new cases per 10 000 susceptible people) during the second wave (with R0 near to one), in spite of presenting greater incidence (8.8 cases per day), compensated for by a high rate of removal (11,5 cases per day) which lasted less than the epidemic (11,1 days), and a lower rate of attack (1 case per each 100 susceptible people). Conclusions: The susceptible-infected model can be useful during an epidemic's initial phase (prior to removal); however, closer monitoring of an epidemic's development is required for modelling the strength of removal and deriving useful information for decision-making.Ítem Computing Tutte polynomials of contact networks in classrooms(SPIE-INT SOC OPTICAL ENGINEERING, 2013-01-01) Hincapié, D.; Ospina, J.; Hincapié, D.; Ospina, J.; Universidad EAFIT. Departamento de Ciencias; Lógica y ComputaciónObjective: The topological complexity of contact networks in classrooms and the potential transmission of an infectious disease were analyzed by sex and age. Methods: The Tutte polynomials, some topological properties and the number of spanning trees were used to algebraically compute the topological complexity. Computations were made with the Maple package GraphTheory. Published data of mutually reported social contacts within a classroom taken from primary school, consisting of children in the age ranges of 4-5, 7-8 and 10-11, were used. Results: The algebraic complexity of the Tutte polynomial and the probability of disease transmission increases with age. The contact networks are not bipartite graphs, gender segregation was observed especially in younger children. Conclusion: Tutte polynomials are tools to understand the topology of the contact networks and to derive numerical indexes of such topologies. It is possible to establish relationships between the Tutte polynomial of a given contact network and the potential transmission of an infectious disease within such network. © 2013 SPIE.Ítem Optimal control in a model of malaria with differential susceptibility(SPIE-INT SOC OPTICAL ENGINEERING, 2014-01-01) Hincapié, D.; Ospina, J.; Hincapié, D.; Ospina, J.; Universidad EAFIT. Departamento de Ciencias; Lógica y ComputaciónA malaria model with differential susceptibility is analyzed using the optimal control technique. In the model the human population is classified as susceptible, infected and recovered. Susceptibility is assumed dependent on genetic, physiological, or social characteristics that vary between individuals. The model is described by a system of differential equations that relate the human and vector populations, so that the infection is transmitted to humans by vectors, and the infection is transmitted to vectors by humans. The model considered is analyzed using the optimal control method when the control consists in using of insecticide-treated nets and educational campaigns; and the optimality criterion is to minimize the number of infected humans, while keeping the cost as low as is possible. One first goal is to determine the effects of differential susceptibility in the proposed control mechanism; and the second goal is to determine the algebraic form of the basic reproductive number of the model. All computations are performed using computer algebra, specifically Maple. It is claimed that the analytical results obtained are important for the design and implementation of control measures for malaria. It is suggested some future investigations such as the application of the method to other vector-borne diseases such as dengue or yellow fever; and also it is suggested the possible application of free software of computer algebra like Maxima. © 2014 Copyright SPIE.Ítem Spatial epidemic patterns recognition using computer algebra(SPRINGER, 2007-01-01) Hincapié, D.; Ospina, J.; Hincapié, D.; Ospina, J.; Universidad EAFIT. Departamento de Ciencias; Lógica y ComputaciónAn exploration in Symbolic Computational bio-surveillance is showed. The main obtained results are that the geometry of the habitat determines the critical parameters via the zeroes of the Bessel functions and the explicit forms of the static and non-static spatial epidemic patterns. © Springer-Verlag Berlin Heidelberg 2007.