Examinando por Autor "Gilpavas, E."
Mostrando 1 - 6 de 6
Resultados por página
Opciones de ordenación
Ítem Análisis de la sensibilidad paramétrica del proceso de producción de ciclo-trimetileno-triamina(Centro de Informacion Tecnologica, 2014-01-01) Ojeda, J.C.; Gilpavas, E.; Dobrosz-Gómez, I.; Gómez, M.Á.; Ojeda, J.C.; Gilpavas, E.; Dobrosz-Gómez, I.; Gómez, M.Á.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Analyses of temperature, conversion, and their sensitivity with respect to the initial temperature were investigated by parametric sensitivity analysis using a dimensionless batch reactor model for the cyclotrimethylene- triamine synthesis. At first, an expression for its reaction rate was fitted from experimental data available in the literature. Then, a new simple sensitivity-based criterion was used to determine critical operating conditions analyzing temperature sensitivity trajectories. The critical condition of runaway reaction corresponds to a Semenov number (F) equals to 0.684, a heat of reaction parameter (B) equals to 15 and an Arrhenius-type number (?) of 20.Ítem Degradación de Colorante Amarillo 12 de Aguas Residuales Industriales utilizando Hierro Cero Valente, Peróxido de Hidrógeno y Radiación Ultravioleta(Centro de Informacion Tecnologica, 2016-01-01) Gilpavas, E.; Medina, J.; Dobrosz-Gómez, I.; Gómez, M.Á.; Gilpavas, E.; Medina, J.; Dobrosz-Gómez, I.; Gómez, M.Á.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The Fenton heterogeneous process in a fluidized bed reactor using Zero Valent Iron (ZVI), in the metallic state, for the treatment of textile wastewater has been used an analyzed. The aim of this work was to optimize the following operating parameters: initial dye concentration, H2O2 concentration, pH, amount of ZVI, and UV radiation, for the removal of dye and organic matter. At first, a fractional factorial experimental design allows defining the most influential factors. After that, they were optimized using the Response Surface Methodology coupled to the Box-Behnken experimental design. The optimal conditions were found to be as follows: initial dye concentration, 881 mg/L; pH 5; ZVI concentration, 5,31 g/L; H2O2 concentration, 0,86 mL/L. At these conditions, the degradation kinetics was performed, reaching 100% and 80,83% of dye and chemical oxygen demand respectively, in 150 minutes of reaction.Ítem Degradación y mineralización de tartrazina mediante electrooxidación. Optimización de las condiciones de operación(Centro de Informacion Tecnologica, 2014-01-01) Gilpavas, E.; Dobrosz-Gómez, I.; Gómez-García, M.Á.; Gilpavas, E.; Dobrosz-Gómez, I.; Gómez-García, M.Á.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)In this work, the operational conditions of the tartrazine electro-oxidation (EO) process were optimized. The batch reactor used has two electrodes: one made of diamond doped with boron and the other one of titanium, working at monopolar configuration. The initial dyestuff concentration (Ci), the current density (i) and the pH were defined as the main factors affecting the EO. Their optimal values were found as follows: Ci=30 ppm, i=5mA/cm2 and pH=6.0. At these conditions, a kinetic analysis was performed in the terms of: the percentage of the dyestuff decolorization (%DC), the percentage of the chemical oxygen demand (%DCOD), and the percentage of the total organic carbon (%TOC). Additionally, the effect of Fe2+ (electro- Fenton process, EF) and Fe2+/UV radiation (electro-photo-Fenton process, EFF) on the studied process were evaluated. The work demonstrates the validity of the hypothesis about the most significant parameters that affect the EO process.Ítem Región de Inestabilidad y Optimización de las Condiciones de Producción de Metanol en un Reactor Lurgi(Centro de Informacion Tecnologica, 2016-01-01) Gómez, M.Á.; Dobrosz-Gómez, I.; Gilpavas, E.; Gómez, M.Á.; Dobrosz-Gómez, I.; Gilpavas, E.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)In the present work, the operational conditions for methanol synthesis in a Lurgi reactor are analyzed. The industrial data for a packed reactor (consisting of 1620 tubes of 7 m long) are the basis of this study. At first, the industrial reactor is simulated achieving excellent agreement with plant data. Then, the instability region is defined as a boundary in the conversion-temperature diagram and defines the conditions that must be avoided during reactor operation. The optimization of the operational conditions is performed based on the optimal temperature progression from the iso-reaction rate curves. Finally, it was found that the cooling fluid must be at 230 °C and that the heat transfer coefficient must guarantee a value of 118 J/(s.K.m2).Ítem Temperature-Scanning Method for the kinetic studies of CO oxidation over ceria-zirconia supported gold catalysts(ELSEVIER SCIENCE SA, 2015-12-15) Gómez-García, M.-A.; Gómez Mendoza, N.A.; Dobrosz-Gómez, I.; Gilpavas, E.; Rynkowski, J.; Gómez-García, M.-A.; Gómez Mendoza, N.A.; Dobrosz-Gómez, I.; Gilpavas, E.; Rynkowski, J.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)The experimental data of CO oxidation over the series of 2 wt.% Au/Ce1-xZrxO2 (x=0, 0.25, 0.5, 0.75, 1) catalyst were analyzed using a variation of the Temperature Scanning Method with the aim of catalyst's composition optimization. The catalysts were prepared by the Direct Anionic Exchange technique. The kinetic of CO oxidation was quantified by conversion-rate-temperature (X, r, T) triplets, calculated from raw data obtained using a plug flow reactor, working at oxygen stoichiometric, rich, and lean conditions. The data were fitted to the Mars-van Krevelen adsorption-reaction model (MvK). The results showed that the MvK model is able to predict the superficial reaction and the re-oxidation of the catalyst surface. Additionally, the data at oxygen lean conditions revealed the distinctive characteristic of Ce-containing catalysts, which act as oxygen buffer by releasing-uptalcing oxygen. The obtained values of the fitted parameters allowed re-mapping raw data onto the conversion-temperature-catalyst composition surface plot and their application as a tool for the optimization of catalyst composition. (C) 2015 Elsevier B.V. All rights reserved.Ítem Transition metal loaded TiO2 for phenol photo-degradation(Elsevier Masson SAS, 2015-10-01) Dobrosz-Gómez, I.; Gómez-García, M.Á.; López Zamora, S.M.; Gilpavas, E.; Bojarska, J.; Kozanecki, M.; Rynkowski, J.M.; Dobrosz-Gómez, I.; Gómez-García, M.Á.; López Zamora, S.M.; Gilpavas, E.; Bojarska, J.; Kozanecki, M.; Rynkowski, J.M.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Procesos Ambientales (GIPAB)Photocatalytic degradation of phenol under both UV radiation and visible light, using TiO2 (Degussa P-25) and TiO2 loaded with some transition metal ions (Co, Cu, Fe and Mo) was examined. From the series of metal loaded catalysts, Mo/TiO2 was the most efficient one. In the presence of Mo, neither TiO2 anatase/rutile fraction nor its pore size diameter has been affected. However. Mo made its surface more acidic. The percentage of phenol degradation reached under visible light was significantly lower than that under UV radiation due to the lower degree of light absorption by the catalyst surface. From the series of studied catalysts, 2 wt% Mo/TiO2 was the most efficient one. The synergetic effect between S-BET, mean pore size diameter, catalyst agglomerates size, band gap, ZPC and the type of M0(x)O(y), species on TiO2 surface, depending on Mo loading, created its photocatalytic performance. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.