Examinando por Autor "Durango, Sebastian"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Design of computer experiments applied to modeling of compliant mechanisms for real-time control(SPRINGER, 2013-07-01) Acosta, Diego A.; Restrepo, David; Durango, Sebastian; Ruiz, Oscar E.; Universidad EAFIT. Departamento de Ingeniería de Procesos; Desarrollo y Diseño de ProcesosThis article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force-displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyzing the input-output data of a DOCE) of compliant mechanisms (CMs). The procedure discussed produces a force-displacement meta-model, or closed analytic vector function, that aims to control CMs in real-time. In our work, the factorial and space-filling DOCE meta-model of CMs is supported by finite element analysis (FEA). The protocol discussed is used to model the HexFlex mechanism functioning under quasi-static conditions. The HexFlex is a parallel CM for nano-manipulation that allows six degrees of freedom (x, y, z, ? x, ? y, ? z ) of its moving platform. In the multi-linear model fit of the HexFlex, the products or interactions proved to be negligible, yielding a linear model (i.e., linear in the inputs) for the operating range. The accuracy of the meta-model was calculated by conducting a set of computer experiments with random uniform distribution of the input forces. Three error criteria were recorded comparing the meta-model prediction with respect to the results of the FEA experiments by determining: (1) maximum of the absolute value of the error, (2) relative error, and (3) root mean square error. The maximum errors of our model are lower than high-precision manufacturing tolerances and are also lower than those reported by other researchers who have tried to fit meta-models to the HexFlex mechanism. © 2012 Springer-Verlag London Limited.Ítem Design of computer experiments applied to modeling of compliant mechanisms for real-time control(SPRINGER, 2013-07-01) Acosta, Diego A.; Restrepo, David; Durango, Sebastian; Ruiz, Oscar E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article discusses the use of design of computer experiments (DOCE) (i.e., experiments run with a computer model to find how a set of inputs affects a set of outputs) to obtain a force-displacement meta-model (i.e., a mathematical equation that summarizes and aids in analyzing the input-output data of a DOCE) of compliant mechanisms (CMs). The procedure discussed produces a force-displacement meta-model, or closed analytic vector function, that aims to control CMs in real-time. In our work, the factorial and space-filling DOCE meta-model of CMs is supported by finite element analysis (FEA). The protocol discussed is used to model the HexFlex mechanism functioning under quasi-static conditions. The HexFlex is a parallel CM for nano-manipulation that allows six degrees of freedom (x, y, z, ? x, ? y, ? z ) of its moving platform. In the multi-linear model fit of the HexFlex, the products or interactions proved to be negligible, yielding a linear model (i.e., linear in the inputs) for the operating range. The accuracy of the meta-model was calculated by conducting a set of computer experiments with random uniform distribution of the input forces. Three error criteria were recorded comparing the meta-model prediction with respect to the results of the FEA experiments by determining: (1) maximum of the absolute value of the error, (2) relative error, and (3) root mean square error. The maximum errors of our model are lower than high-precision manufacturing tolerances and are also lower than those reported by other researchers who have tried to fit meta-models to the HexFlex mechanism. © 2012 Springer-Verlag London Limited.Ítem Force-Displacement Model of Compliant Mechanisms using Assur Sub-Chains(Member Organization Mexico of IFToMM, 2011-11-01) Durango, Sebastian; Correa, Jorge; Ruiz OE; Restrepo, J.; Achiche, Sofiane; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article develops a modular procedureto perform force-displacement modeling of planar ?exure-based compliant mechanisms (CMs). The procedure ismostly suitable for planar lumped CMs.Ítem Graph-based structural analysis of planar mechanisms.(Springer Netherlands, 2016-03-03) Durango, Sebastian; Correa, Jorge; Ruiz Salguero, Oscar; Universidad EAFIT. Departamento de Ingeniería Mecánica. Grupo de Investigación CAD CAM CAE, Carrera 49 7 Sur-50, Medellín, Colombia.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEKinematic structure of planar mechanisms addresses the study of attributes determined exclusively by the joining pattern among the links forming a mechanism. The system group classification is central to the kinematic structure and consists of determining a sequence of kinematically and statically independent-simple chains which represent a modular basis for the kinematics and force analysis of the mechanism. This article presents a novel graph-based algorithm for structural analysis of planar mechanisms with closed-loop kinematic structure which determines a sequence of modules (Assur groups) representing the topology of the mechanism. The computational complexity analysis and proof of correctness of the implemented algorithm are provided. A case study is presented to illustrate the results of the devised method.