Examinando por Autor "Duque, J."
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Publicación Automatic detection of building typology using deep learning methods on street level images(PERGAMON-ELSEVIER SCIENCE LTD, 2020-03-20) Duque, J.; Gonzalez, D.; Rueda Plata, Diego; Acevedo, A.; Ramos, R.; Betancourt, A.; García, S.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaAn exposure model is a key component for assessing potential human and economic losses from natural disasters. An exposure model consists of a spatially disaggregated description of the infrastructure and population of a region under study. Depending on the size of the settlement area, developing such models can be a costly and time-consuming task. In this paper we use a manually annotated dataset consisting of approximately 10,000 photos acquired at street level in the urban area of Medellín to explore the potential for using a convolutional neural network (CNN) to automatically detect building materials and types of lateral-load resisting systems, which are attributes that define a building's structural typology (which is a key issue in exposure models for seismic risk assessment). The results of the developed model achieved a precision of 93% and a recall of 95% when identifying nonductile buildings, which are the buildings most likely to be damaged in an earthquake. Identifying fine-grained material typology is more difficult, because many visual clues are physically hidden, but our model matches expert level performances, achieving a recall of 85% and accuracy scores ranging from 60% to 82% on the three most common building typologies, which account for 91% of the total building population in Medellín. Overall, this study shows that a CNN can make a substantial contribution to developing cost-effective exposure models. © 2020 Elsevier LtdPublicación Automatic detection of building typology using deep learning methods on street level images(PERGAMON-ELSEVIER SCIENCE LTD, 2020-03-20) Duque, J.; Gonzalez, D.; Rueda Plata, Diego; Acevedo, A.; Ramos, R.; Betancourt, A.; García, S.; Mecánica AplicadaAn exposure model is a key component for assessing potential human and economic losses from natural disasters. An exposure model consists of a spatially disaggregated description of the infrastructure and population of a region under study. Depending on the size of the settlement area, developing such models can be a costly and time-consuming task. In this paper we use a manually annotated dataset consisting of approximately 10,000 photos acquired at street level in the urban area of Medellín to explore the potential for using a convolutional neural network (CNN) to automatically detect building materials and types of lateral-load resisting systems, which are attributes that define a building's structural typology (which is a key issue in exposure models for seismic risk assessment). The results of the developed model achieved a precision of 93% and a recall of 95% when identifying nonductile buildings, which are the buildings most likely to be damaged in an earthquake. Identifying fine-grained material typology is more difficult, because many visual clues are physically hidden, but our model matches expert level performances, achieving a recall of 85% and accuracy scores ranging from 60% to 82% on the three most common building typologies, which account for 91% of the total building population in Medellín. Overall, this study shows that a CNN can make a substantial contribution to developing cost-effective exposure models. © 2020 Elsevier LtdPublicación ParaVoxel: A domain decomposition based fixed grid preprocessor(WORLD SCIENTIFIC PUBL CO PTE LTD, 2015-06-01) Garcia, M.J.; Duque, J.; Henao, M.; Boulanger, P.; Mecánica AplicadaIn this paper, a parallel cartesian fixed grid mesh generator for structural and fluid dynamics problems is presented. The method uses the boundary representation of a body and produces a set of equal sized cells which are classified in three different types according to its location with respect to the body. Cells are inside, outside or intersecting the boundary of the body. This classification is made by knowing the number of nodes of a cell that are inside body. That process is accomplished very efficiently as the nodes can be classified in batch. Once boundary cells are identified, its geometry is approximated by the convex hull of the nodes inside the body and the intersection points of the boundary against the cell edges. This paper presents the basics of the Fixed Grid Meshing algorithm, followed by some domain decomposition modifications and the data structures required for its parallel implementation. A set of examples and a brief discussion on the possibility of applying this algorithm together with other approaches is presented. © 2015 World Scientific Publishing Company.