Examinando por Autor "Dechow, P.C."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Bone regeneration and docking site healing after bone transport distraction osteogenesis in the canine mandible(W.B. Saunders Ltd, 2012-01-01) Nagashima, L.K.; Rondon-Newby, M.; Zakhary, I.E.; Nagy, W.W.; Zapata, U.; Dechow, P.C.; Opperman, L.A.; Elsalanty, M.E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)Purpose: Bone transport distraction osteogenesis provides a promising alternative to traditional grafting techniques. However, existing bone transport distraction osteogenesis devices have many limitations. The purpose of this research was to test a new device, the mandibular bone transport reconstruction plate, in an animal model with comparable mandible size to humans and to histologically and mechanically examine the regenerate bone. Materials and Methods: Eleven adult foxhounds were divided into an unreconstructed control group of 5 animals and an experimental group of 6 animals. In each animal, a 34-mm segmental defect was created in the mandible. The defect was reconstructed with a bone transport reconstruction plate. Histologic and biomechanical characteristics of the regenerate and unrepaired defect were analyzed and compared with bone on the contralateral side of the mandible after 4 weeks of consolidation. Results: The reconstructed defect was bridged with new bone, with little bone in the control defect. Regenerate density and microhardness were 22.3% and 42.6%, respectively, lower than the contralateral normal bone. Likewise, the anisotropy of the experimental group was statistically lower than in the contralateral bone. Half the experimental animals showed nonunion at the docking site. Conclusion: The device was very stable and easy to install and activate. After 1 month of consolidation, the defect was bridged with new bone, with evidence of active bone formation. Regenerate bone was less mature than the control bone. Studies are underway to identify when the regenerate properties compare with normal bone and to identify methods to augment bone union at the docking site. © 2012 American Association of Oral and Maxillofacial Surgeons.Ítem Bone regeneration and docking site healing after bone transport distraction osteogenesis in the canine mandible(W.B. Saunders Ltd, 2012-01-01) Nagashima, L.K.; Rondon-Newby, M.; Zakhary, I.E.; Nagy, W.W.; Zapata, U.; Dechow, P.C.; Opperman, L.A.; Elsalanty, M.E.; Nagashima, L.K.; Rondon-Newby, M.; Zakhary, I.E.; Nagy, W.W.; Zapata, U.; Dechow, P.C.; Opperman, L.A.; Elsalanty, M.E.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaPurpose: Bone transport distraction osteogenesis provides a promising alternative to traditional grafting techniques. However, existing bone transport distraction osteogenesis devices have many limitations. The purpose of this research was to test a new device, the mandibular bone transport reconstruction plate, in an animal model with comparable mandible size to humans and to histologically and mechanically examine the regenerate bone. Materials and Methods: Eleven adult foxhounds were divided into an unreconstructed control group of 5 animals and an experimental group of 6 animals. In each animal, a 34-mm segmental defect was created in the mandible. The defect was reconstructed with a bone transport reconstruction plate. Histologic and biomechanical characteristics of the regenerate and unrepaired defect were analyzed and compared with bone on the contralateral side of the mandible after 4 weeks of consolidation. Results: The reconstructed defect was bridged with new bone, with little bone in the control defect. Regenerate density and microhardness were 22.3% and 42.6%, respectively, lower than the contralateral normal bone. Likewise, the anisotropy of the experimental group was statistically lower than in the contralateral bone. Half the experimental animals showed nonunion at the docking site. Conclusion: The device was very stable and easy to install and activate. After 1 month of consolidation, the defect was bridged with new bone, with evidence of active bone formation. Regenerate bone was less mature than the control bone. Studies are underway to identify when the regenerate properties compare with normal bone and to identify methods to augment bone union at the docking site. © 2012 American Association of Oral and Maxillofacial Surgeons.Ítem Three-dimensional evaluation of mandibular bone regenerated by bone transport distraction osteogenesis(SPRINGER, 2011-07-01) Kontogiorgos, E.; Elsalanty, M.E.; Zapata, U.; Zakhary, I.; Nagy, W.W.; Dechow, P.C.; Opperman, L.A.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Bioingeniería GIB (CES – EAFIT)The purpose of this study was to evaluate the structure and material properties of native mandibular bone and those of early regenerate bone, produced by bone transport distraction osteogenesis. Ten adult foxhounds were divided into two groups of five animals each. In all animals, a 3- to 4-cm defect was created on one side of the mandible. A bone transport reconstruction plate, consisting of a reconstruction plate with an attached intraoral transport unit, was utilized to stabilize the mandible and regenerate bone at a rate of 1 mm/day. After the distraction period was finished, the animals were killed at 6 and 12 weeks of consolidation. Micro-computed tomography was used to assess the morphometric and structural indices of regenerate bone and matching bone from the unoperated contralateral side. Significant new bone was formed within the defect in the 6- and 12-week groups. Significant differences (P = 0.05) between mandibular regenerated and native bone were found in regard to bone volume fraction, mineral density, bone surface ratio, trabecular thickness, trabecular separation, and connectivity density, which increased from 12 to 18 weeks of consolidation. We showed that regenerated bone is still mineralizing and that native bone appears denser because of a thick outer layer of cortical bone that is not yet formed in the regenerate. However, the regenerate showed a significantly higher number of thicker trabeculae. © 2011 Springer Science+Business Media, LLC.Ítem Three-dimensional evaluation of mandibular bone regenerated by bone transport distraction osteogenesis(SPRINGER, 2011-07-01) Kontogiorgos, E.; Elsalanty, M.E.; Zapata, U.; Zakhary, I.; Nagy, W.W.; Dechow, P.C.; Opperman, L.A.; Kontogiorgos, E.; Elsalanty, M.E.; Zapata, U.; Zakhary, I.; Nagy, W.W.; Dechow, P.C.; Opperman, L.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThe purpose of this study was to evaluate the structure and material properties of native mandibular bone and those of early regenerate bone, produced by bone transport distraction osteogenesis. Ten adult foxhounds were divided into two groups of five animals each. In all animals, a 3- to 4-cm defect was created on one side of the mandible. A bone transport reconstruction plate, consisting of a reconstruction plate with an attached intraoral transport unit, was utilized to stabilize the mandible and regenerate bone at a rate of 1 mm/day. After the distraction period was finished, the animals were killed at 6 and 12 weeks of consolidation. Micro-computed tomography was used to assess the morphometric and structural indices of regenerate bone and matching bone from the unoperated contralateral side. Significant new bone was formed within the defect in the 6- and 12-week groups. Significant differences (P = 0.05) between mandibular regenerated and native bone were found in regard to bone volume fraction, mineral density, bone surface ratio, trabecular thickness, trabecular separation, and connectivity density, which increased from 12 to 18 weeks of consolidation. We showed that regenerated bone is still mineralizing and that native bone appears denser because of a thick outer layer of cortical bone that is not yet formed in the regenerate. However, the regenerate showed a significantly higher number of thicker trabeculae. © 2011 Springer Science+Business Media, LLC.