Examinando por Autor "Correa, J."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Force-Displacement Model of Compliant Mechanisms using Assur Sub-Chains(2011-06) Durango, S.; Correa, J.; Ruíz, O.; Aristizábal, M.; Restrepo-Giraldo, J.; Achiche, S.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEThis article develops a modular procedure to perform force-displacement modeling of planar flexurebased compliant mechanisms (CMs) -- The procedure is mostly suitable for planar lumped CMs -- To achieve the position analysis of CMs requires: (i) to implement the kinematic analysis as for ordinary mechanisms, (ii) to solve equilibrium problem by means of an static analysis and (iii) to model the flexures behavior through a deflection analysis -- The novel contribution of this article relies on the fact that a division strategy of the CM into Assur subchainsm is implemented, so that any CM subjected to such disaggregation can be accurately modeled -- For this purpose a mathematical model for leaf-spring flexure type is presented and used through this paper -- However any other flexure model can be used instead -- To support the technique, a three Degrees–Of–Freedom (3-DOF) flexure-based parallel mechanism is used as case study -- Results are compared to a Finite Element Analysis (FEA)Ítem Graph-based structural analysis of planar mechanisms(Springer Netherlands, 2017-01-01) Durango, S.; Correa, J.; Ruiz, O.E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Laboratorio CAD/CAM/CAEKinematic structure of planar mechanisms addresses the study of attributes determined exclusively by the joining pattern among the links forming a mechanism. The system group classification is central to the kinematic structure and consists of determining a sequence of kinematically and statically independent-simple chains which represent a modular basis for the kinematics and force analysis of the mechanism. This article presents a novel graph-based algorithm for structural analysis of planar mechanisms with closed-loop kinematic structure which determines a sequence of modules (Assur groups) representing the topology of the mechanism. The computational complexity analysis and proof of correctness of the implemented algorithm are provided. A case study is presented to illustrate the results of the devised method. © 2016, Springer Science+Business Media Dordrecht.