Examinando por Autor "Carbonell, J.M."
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Dislocation density based flow stress model applied to the PFEM simulation of orthogonal cutting processes of Ti-6Al-4V(MDPI AG, 2020-01-01) Rodríguez, J.M.; Larsson, S.; Carbonell, J.M.; Jonsén, P.; Rodríguez, J.M.; Larsson, S.; Carbonell, J.M.; Jonsén, P.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasMachining of metals is an essential operation in the manufacturing industry. Chip formation in metal cutting is associated with large plastic strains, large deformations, high strain rates and high temperatures, mainly located in the primary and in the secondary shear zones. During the last decades, there has been significant progress in numerical methods and constitutive modeling for machining operations. In this work, the Particle Finite Element Method (PFEM) together with a dislocation density (DD) constitutive model are introduced to simulate the machining of Ti-6Al-4V. The work includes a study of two constitutive models for the titanium material, the physically based plasticity DD model and the phenomenology based Johnson-Cook model. Both constitutive models were implemented into an in-house PFEM software and setup to simulate deformation behaviour of titanium Ti6Al4V during an orthogonal cutting process. Validation show that numerical and experimental results are in agreement for different cutting speeds and feeds. The dislocation density model, although it needs more thorough calibration, shows an excellent match with the results. This paper shows that the combination of PFEM together with a dislocation density constitutive model is an excellent candidate for future numerical simulations of mechanical cutting. © 2020 by the authors.Ítem Modelling 3D metal cutting problems with the particle finite element method(Springer Verlag, 2020-01-01) Carbonell, J.M.; Rodríguez, J.M.; Oñate, E.; Carbonell, J.M.; Rodríguez, J.M.; Oñate, E.; Universidad EAFIT. Departamento de Ingeniería Mecánica; Mecatrónica y Diseño de MáquinasThis work presents the development of the Particle Finite Element Method (PFEM) for the modelling of 3D solid mechanics problems under cutting conditions. The study and analysis of numerical models reproducing the cut of a material is a matter of interest in several areas; namely, the improvement of the material properties, the optimization of the process and tool geometries and the prediction of unexpected failures. The analysis of bi-dimensional (2D) models is the most common approach for different reasons. Just focusing on the simulation point of view, it is the simplest procedure, the cheapest in terms of computational cost and sometimes the only feasible numerical solution. However, many industrial machining processes, such as cutting, blanking, milling and drilling have not a possible simplification to 2D models. Actually even a simple turning processes for non-orthogonal cuts can not be simplified to 2D. This work present an upgrade of the PFEM techniques in order to deal with the 3D machining problems. We present recent improvements in the finite element formulation, the meshing re-connections and the contact detection. By applying these developments the PFEM has the capability for modelling a wide range of practical machining processes. In this paper the capacity of the formulation and the accuracy of the results are analyzed and validated with some representative examples. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.