Artículos
URI permanente para esta colección
Examinar
Examinando Artículos por Autor "Arola, D."
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem Contributions of intermolecular bonding and lubrication to the mechanical behavior of a natural armor(ELSEVIER SCI LTD, 2020-01-01) Jiang, H.; Ghods, S.; Weller, E.; Waddell, S.; Ossa, E.A.; Yang, F.; Arola, D.; Jiang, H.; Ghods, S.; Weller, E.; Waddell, S.; Ossa, E.A.; Yang, F.; Arola, D.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaAmong many dermal armors, fish scales have become a source of inspiration in the pursuit of “next-generation” structural materials. Although fish scales function in a hydrated environment, the role of water and intermolecular hydrogen bonding to their unique structural behavior has not been elucidated. Water molecules reside within and adjacent to the interpeptide locations of the collagen fibrils of the elasmodine and provide lubrication to the protein molecules during deformation. We evaluated the contributions of this lubrication and the intermolecular bonding to the mechanical behavior of elasmodine scales from the Black Carp (Mylopharyngodon piceus). Scales were exposed to polar solvents, followed by axial loading to failure and the deformation mechanisms were characterized via optical mechanics. Displacement of intermolecular water molecules by liquid polar solvents caused significant (p = 0.05) increases in stiffness, strength and toughness of the scales. Removal of this lubrication decreased the capacity for non-linear deformation and toughness, which results from the increased resistance to fibril rotations and sliding caused by molecular friction. The intermolecular lubrication is a key component of the “protecto-flexibility” of scales and these natural armors as a system; it can serve as an important component of biomimetic-driven designs for flexible armor systems. Statement of Significance: The natural armor of fish has become a topic of substantial scientific interest. Hydration is important to these materials as water molecules reside within the interpeptide locations of the collagen fibrils of the elasmodine and provide lubrication to the protein molecules during deformation. We explored the opportunity for tuning the mechanical behavior of scales as a model for next-generation engineering materials by adjusting the extent of hydrogen bonding with polar solvents and the corresponding interpeptide molecular lubrication. Removal of this lubrication decreased the capacity for non-linear deformation and toughness due to an increase in resistance to fibril rotations and sliding as imparted by molecular friction. We show that intermolecular lubrication is a key component of the “protecto-flexibility” of natural armors and it is an essential element of biomimetic approaches to develop flexible armor systems. © 2020 Acta Materialia Inc.Ítem Effect of aging on the microstructure, hardness and chemical composition of dentin(PERGAMON-ELSEVIER SCIENCE LTD, 2015-12-01) Montoya, C.; Arango-Santander, S.; Peláez-Vargas, A.; Arola, D.; Ossa, E.A.; Montoya, C.; Arango-Santander, S.; Peláez-Vargas, A.; Arola, D.; Ossa, E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaObjective: Understanding the effects of biological aging on human tissues has been a topic of extensive research. With the increase in healthy seniors and quality of life that topic is becoming increasingly important. In this investigation the effects of aging on the microstructure, chemical composition and hardness of human coronal dentin was studied from a comparison of teeth within ``young'' and ``old'' age groups. Methods: The microstructure of dentin within three regions (i.e., inner, middle and outer) was analyzed using electron and optical microscopy. The mineral-to-collagen ratio in these three regions was estimated using Raman spectroscopy and the hardness was evaluated using microindentation. Results: Results showed that there were significant differences in tubule density, tubule diameter and peritubular cuff diameter with depth. Although there was no difference in tubule density and diameter of the tubules between the age groups, there was a significant difference in the occlusion ratio. A significant increase in hardness between young and old patients was found for middle and outer dentin. An increase in mineral-to-collagen ratio from inner to outer dentin was also found for both groups. In old patients, an increase in mineral content was found in outer coronal dentin as a consequence of tubule occlusion. Conclusions: An increase in occlusion ratio, hardness, and mineral content was found in the dentin of adult patients with age. This increase is most evident in the outer coronal dentin. (C) 2015 Elsevier Ltd. All rights reserved.Ítem Effect of chemical composition and microstructure on the mechanical behavior of fish scales from Megalops Atlanticus(ELSEVIER SCIENCE BV, 2016-03-01) Gil-Duran, S.; Arola, D.; Ossa, E.A.; Gil-Duran, S.; Arola, D.; Ossa, E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaThis paper presents an experimental study of the composition, microstructure and mechanical behavior of scales from the Megalops Atlanticus (Atlantic tarpon). The microstructure and composition were evaluated by Scanning Electron Microscopy (SEM) and RAMAN spectroscopy, respectively. The mechanical properties were evaluated in uniaxial tension as a function of position along the length of the fish (head, mid-length and tail). Results showed that the scales are composed of collagen and hydroxyapatite, and these constituents are distributed within three well-defined layers from the bottom to the top of the scale. The proportion of these layers with respect to the total scale thickness varies radially. The collagen fibers are arranged in plies with different orientations and with preferred orientation in the longitudinal direction of the fish. Results from the tensile tests showed that scales from Megalops Atlanticus exhibit variations in the elastic modulus as a function of body position. Additional testing performed with and without the highly mineralized top layers of the scale revealed that the mechanical behavior is anisotropic and that the highest strength was exhibited along the fish length. Furthermore, removing the top mineralized layers resulted in an increase in the tensile strength of the scale. © 2015 Elsevier Ltd.Ítem Importance of tubule density to the fracture toughness of dentin(PERGAMON-ELSEVIER SCIENCE LTD, 2016-07-01) Montoya, C.; Arola, D.; Ossa, E.A.; Montoya, C.; Arola, D.; Ossa, E.A.; Universidad EAFIT. Departamento de Ingeniería de Producción; Materiales de IngenieríaObjective: The fracture toughness of dentin is critical to the prevention of tooth fracture. Within the tooth crown, the mechanical properties of dentin are influenced by spatial variations in the density and diameter of the dentin tubules with distance from the pulp. There are also relevant changes to the microstructure of dentin with age. In this investigation the importance of tubule density to the fracture toughness of dentin was evaluated in ``young'' and ``old'' age groups. Methods: The variations in microstructure (density and diameter of tubules) from young and old donor teeth were studied by means of optical microscopy. Results: A reduction in the density and diameter of tubules was identified to occur with aging. An approach previously proposed to study the mechanical behavior of porous materials was used to model the fracture toughness of coronal dentin in terms of the tubule characteristics. Results were then compared with published results from previous studies. Conclusions: The model predictions were consistent with experimental results for the fracture toughness of dentin from young donor teeth, but overestimated the values that have been reported for ``old'' dentin. (C) 2016 Elsevier Ltd. All rights reserved.