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When despair for the world grows in me 

and I wake in the night at the least sound 

in fear of what my life and my children's lives may be, 

I go and lie down where the wood drake 

rests in his beauty on the water, and the great heron feeds. 

I come into the peace of wild things 

who do not tax their lives with forethought 

of grief. I come into the presence of still water. 

And I feel above me the day-blind stars 

waiting with their light. For a time 

I rest in the grace of the world, and am free. 

 

Wendell Berry 
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Introduction 

Research proposal 

Dominant dynamics of available wave energy dictate coastal gradients in alongshore 

sediment transport over wave-dominated continental shelves, where large-scale coastal 

evolution depends upon wave-induced sediment fluxes. We propose to study wave energy 

flux variability (P in W/m) from high-fidelity simulations of wave climate, to classify the 

fundamental dynamic patterns of P into morphodynamical regimes based on pioneering 

classifications, serving as a data-driven indicator for large-scale, and wave-induced coastal 

evolution. Additionally, we describe and predict the variability of P in a complex system 

framework with a dimensionality reduction approach to produce a reduced-order model 

(ROM) of the system of interest. Where we use spatio-temporal data to discover, reduce, and 

solve a symbolic expression that forecasts the coastal variability of P along compressional 

continental shelves of the Pacific Northern Andes. 

In particular, the problems we tackle in this document are: i) the classification of 𝑃 into low-

rank regimes based on wave climate metrics, pioneering morphodynamical and geological 

characterizations, as a low-dimensional dynamic representation; ii) the description of 

temporal patterns using spectral and modal analysis on time series data to identify climate-

driven periodicities (i. e. El Niño Southern Oscillation); and finally, iii) the discovery and 

evaluation of a ROM of the dynamical system, from finding the nonlinear governing terms 

to numerically solving the model for future states. Overall, we pretend to extract physical 

intuition from the dynamical system and PDE, to gain morphodynamical insights and 

interpretable results. In our view, modeling mesoscale changes in the amount of energy 
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available in ocean waves to transport sediment along continental shelves would complement 

previous studies, and move forward our understanding of large-scale coastal evolution in the 

Pacific Coast of the Northern Andes, outlining the importance of leading-order variables in 

such complex systems. 

Background and context 

Ocean surface gravity waves exert decisive control on the morphodynamics of nearshore 

environments (Komar & Holman, 1986), with the shoreface being defined as the transitional 

zone between the continental shelf and the shoreline in which long-period waves (“ordinary 

waves”) interact with the seabed (Hamon-Kerivel et al., 2020). Their origin allows a 

separation into two regimes: locally wind-generated waves, called local waves, and waves 

that outrun their generating wind, called swell (Holthuijsen, 2007; Thompson et al., 1996). 

These wave environments, or wave fields carrying energy, interfere with each other and 

scatter over ocean bedforms, creating long-term complex wave variability commonly 

referred to as “wave climate” (Hallermeier, 1980). 

The use of operational wave climate predictions (based on phase-averaged properties) 

provides an alternative to modeling fully nonlinear wave dynamics, given the complexity of 

wave transformations over variable bathymetry (Athanassoulis & Belibassakis, 1999; 

Sheremet et al., 2016). This application has proven useful along the coastlines of developing 

countries that lack proper instrumentation (Osorio et al., 2016). Using reanalysis models such 

as WAVEWATCH III® (WW3), an approximated solution is obtained by empirically 

applying source terms that represent wave evolution, along with wind and temperature 

datasets to output statistically significant wave parameters (Montoya et al., 2013; Morim et 

al., 2020; Portilla et al., 2015). Furthermore, hindcast datasets are in good agreement with 

buoy measurements (Bromirski et al., 2013) and allow quantifying long-term coastal 

morphodynamics from wave climate (Nienhuis et al., 2020). As a complex dynamical 

system, wave-induced coastal morphodynamics can be analyzed from models of dominant 

dynamic patterns in wave climate. 

Recent work on dynamical systems and big data analytics has provided new data-driven 

tools, algorithms, and graphical representations of complex, multivariate, and high-
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dimensional systems. Through robust statistics and computational learning tools,  data-driven 

models produce accurate representations and parsimonious models of nonlinear behavior 

(Brunton et al., 2020). Furthermore, the use of data-driven models to reduce computational 

expense, solvent analytical complexity, and generate physical intuition on the fundamental 

dynamical system (Thomson & Emery, 2014), has had significant results over the last two 

decades (Bai et al., 2020; Köhler et al., 2010; Rudy et al., 2017; Zou et al., 2006).  

We use the philosophical and scientific framework of complex systems science, where 

information from parts of the system and their non-trivial interactions are more important 

than information within the parts themselves (Sayama, 2015). Additionally, we owe to 

consider the Anthropocene thesis that we live in a new epoch of human-driven climate 

forcing (Syvitski et al., 2020), where the study of Earth systems is presented with a new 

paradigm that climate balance is no longer only driven by planetary (Milankovitch) cycles. 

Consequently, changes from 1980 to 2010 would represent both anthropic and Natural 

forcing factors. In this case, assessing wave energy variability requires considering the 

coupled wave-atmosphere system controlled by synoptic climate drivers, nonlinear 

interactions, and complex leading-order dynamics (Christakos et al., 2020), to develop a 

model which helps understanding potential climate change impact and future coastal 

evolution in the Pacific Northern Andes (Figure 1).  

Specific objectives 

 

1. Research the scientific background and context regarding 1) oceanographic and 

morphodynamic studies on 𝑃 dissipation, distribution, and impact along continental 

shelves; as well as 2) the applied mathematics developed to model such dynamical 

systems from high-fidelity data. 

2. Acquire and explore reanalysis wave parameters of hindcast wave climate from an 

operational wave prediction model (WW3) to numerically calculate 𝑃 from time-

series data (from 1980 to 2010). 

3. Apply pre-processing and processing stages to compute time series outlining 

seasonal, anomaly, and spectral components in the variability of 𝑃 along continental 

shelves. 
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4. Apply classification and clustering techniques to coastal values of 𝑃 associated to 

wave climate metrics and coastal morphodynamics, in a reduced-order representation 

of hierarchical modal behavior. 

5. Develop and evaluate a modeling architecture, based on combining data-driven 

techniques, analytic frameworks, and numerical schemes, to build a mathematical 

model that predicts accurate future states of reduced-order dynamics of 𝑃. 

6. Generate physical intuition and interpretability discussions from the developed 

model, to better understand wave-induced morphodynamics and coastal evolution. 

About the structure of this document 

This thesis is divided into two chapters. Chapter 1 focuses on the exploratory analysis of 

wave climate and its relation to shoreface morphodynamics through the variable wave energy 

flux, together with the temporal identification of climate-driven periodicities in the data. 

Chapter 2 focuses on the applied mathematics used to obtain a reduced-order model of wave 

energy flux from data-driven methods and linearization schemes. Both chapters are presented 

in the form of the final manuscripts to be submitted for peer review. Therefore, some context 

may be repetitive in the introductory sections of both chapters. Nevertheless, both chapters 

present separate approaches with relevant discussions, while the conclusions of the research 

project are presented lastly encompassing both chapters. 

  



15 

 

 

 

 

1. Chapter 1: Dynamics of Wave Energy Flux along 
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Abstract 

The shelf morphology along the Northern Andes Pacific coast exerts control on wave energy 

flux alongshore variability. In turn, available wave energy dictates gradients in alongshore 

sediment transport, shaping coastline morphology at various spatio-temporal scales. Here, 

we analyze wave energy flux variability from wave climate simulations along the Northern 

Andes Pacific coast to classify the fundamental patterns into morphodynamical regimes. We 

identify three regimes in a low-rank, optimal coordinate system from our data-driven 

modeling architecture. Further, we associate these regimes with shoreface morphodynamics 

and coastal morphology classifications, connecting our modeling architecture with wave-

induced sediment transport metrics along continental shelves. Our results provide a modeling 

architecture of wave climate, illuminating the importance of hidden leading-order variables 

in complex systems, such as mesoscale wave-induced sediment transport along continental 

shelves. 

1.1. Introduction 

Wave climate variability, along with sea-level rise, will be dominant factors impacting 

shoreline evolution in the coming decades (Syvitski et al., 2020). Particularly considerable 

impacts are found at tropical coasts, such as South America’s Northern Andes compressional 

margins and continental shelves (Bender & Dean, 2003; Mortlock & Goodwin, 2015; 

Restrepo & Kjerfve, 2002; Salazar et al., 2018). Wave energy variability, driven by climate, 

tectonics, wave-wave interactions, and dissipation mechanisms, has been proven to relate 

significantly with seafloor topography at the nearshore (Ardhuin et al., 2003, 2009). The 

almost stochastic interplay of oceanographic, hydroclimatic, and morphodynamics factors 

creates a complex dynamical system of nearshore wave energy, in which nonlinear processes 

regulate, balance, and produce the resultant wave behavior and observed coastal impact. 

Understanding wave climate spatio-temporal variability plays a fundamental role in 

forecasting littoral feedbacks along wave-dominated coasts. These feedbacks include wave-

driven sediment transport at wave-dominated deltas (Almar et al., 2021; Nienhuis et al., 

2015), shoreline evolution under unstable wave regimes (Ashton et al., 2001), and wave 

transformation over-complicated nearshore bathymetry (Paniagua-Arroyave et al., 2019). In 
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that sense, hindcasting dominant dynamics of wave energy associated with sediment 

transport allows forecasting mesoscale wave-induced morphodynamics and climate-driven 

patterns in coastal evolution. 

On the other hand, the theoretical-empirical description used in most operational wave 

prediction models applied in the ocean waves modeling community (WW3 included) is 

currently challenged by a new view of sea-wave physics based on resonant nonlinear wave 

interactions controlling the mechanism of wave growth rather than wind forcing (Zakharov 

et al., 2015, 2017). Although both frameworks result in good approximations of observed 

wave behavior, they differ mostly on the physical phenomena driving the sea-wave evolution. 

Overall, simulated wave energy dissipation is not fully operational at variable bathymetry, 

but significant values can be found at the boundary between the open ocean and nearshore 

environments, applicable to our implementation. This boundary is defined as the shoreface 

by Hamon-Kerivel et al (2020). Where the upper shoreface is mostly affected by wave 

hydrodynamics, and the lower shoreface is more heavily influenced by geological factors, 

climate change, and sea-level rise (Hapke et al., 2016). 

As an emergent complex system, mesoscale wave-induced coastal changes are dominated by 

wave energy spatio-temporal evolution. Consequently, high-fidelity simulations of wave 

climate provide means for understanding wave energy variability on a global scale, from 

mesoscale to synoptic changes, along unmonitored coasts (Nienhuis et al., 2020). Which 

combined with data-driven techniques, these high-fidelity results allow for unraveling wind-

wave and wave-induced dynamic patterns (Brunton et al., 2020). 

Here, we analyze wave climate data from a coastal morphodynamics standpoint to develop a 

data-driven modeling architecture that assesses wave energy flux’s (𝑃) nonlinear dynamics 

along continental shelves. We classify the dominant patterns and predict future dynamical 

states of the system. We apply this architecture as a study case in the Pacific Coast of the 

Northern Andes compressive margin. 
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1.2. Background: Modeled wave climate 

Since WW3 accounts for wave scattering and dissipation, we can explore correlations 

between the spatial variability in 𝑃 and seabed morphology. WW3 uses source terms based 

on bottom friction coefficients obtained from swell observations in shallow water by the Joint 

North Sea Wave Project (JONSWAP) for swell and local wind waves. This value represents 

sea bottoms such as shelf seas, tidal regions, and lakes with sand, gravel, and fine clay 

materials (Zijlema et al., 2012).  

In the WW3 framework, surface gravity waves are described by amplitude and phase 

parameters, i.e., wavenumber (𝑘 or 𝒌 in vector form), direction (𝜃), intrinsic and angular 

frequencies (𝜎 and 𝜔, respectively). The model assumes linear wave theory such that the 

scale variations in depth and currents are much larger than those of an individual wave 

perturbation. To include mean current effects, a distinction is made between relative and 

absolute frequencies, (𝑓𝑟 and 𝑓𝑎, respectively). 

The model also assumes incompressible fluids and irrotational flows to solve the wave action 

balance equation by incorporating source terms that account for wind input, wave 

transformation (including nonlinear evolution) (Ardhuin et al., 2003), bottom friction, and 

scattering (Hasselmann et al., 1980), and energy dissipation (Chawla et al., 2011; Phillips, 

1977). The model simplifies the wave description by using the variance density spectra 

denoted as 𝐹(𝑘, 𝜎, ƒ; 𝑥, 𝑦), where and the wave action density spectrum is defined as 

𝑁(𝑘, 𝜃; 𝑥, 𝑡) = 𝐹(𝑘, 𝜃: 𝑥, 𝑡)/𝜎, within a wave action balance supported by the linear theory 

(i.e. Chiang & Stiassnie, 2005, section 3.1). WW3 uses the balanced equation for the wave 

action spectrum 𝑁(𝑘, 𝜃; 𝑥, 𝑡) such that: 

 𝑑𝑁
𝑑𝑡⁄ = 𝑆

σ⁄  (1) 

where the total derivative includes variability in time, space, wavenumber, and direction, and 

𝑆 represent the effect of various processes in the wave variance density as sources and sinks 

of wave energy. See Chawla, Spindler, and Tolman (2011) for a detailed mathematical 

description. 
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1.3. Background: The Pacific coast of the Northern Andes 

The study area where we apply the developed architecture is the Northern Andes Pacific 

basin and the Colombian Pacific coastline (Figure 1). From the border with Ecuador (1.3°N, 

79°W) in the westernmost branch of the South American Andes (the Cordillera Occidental, 

in Spanish) to the border with Panama (7°N, 78.5°W). The coastline length is approximately 

864 km with a linear distance of 629.3 km. It is characterized by heavy rainfall, numerous 

rivers, and luxuriant vegetation (Correa & Morton, 2010; Morton et al., 2000) showing 

overall tropical meteorological conditions (Portilla-Yandún et al., 2019). 

The geological configuration of the littoral zone is characterized by a narrow continental 

shelf varying in dimensions of tens of kilometers (≈ 8 km at Solano Bay and ≈ 70 km at 

Mira delta) before a slope zone leading into the deep ocean. The resultant variety of beaches 

along the coast is due to de complex geological history of the Northern Andes; a combination 

of big rivers with dense vegetation and mangroves, rainfall, as well as high tectonic and 

seismic activity (Correa & Gonzalez, 2000; Latrubesse & Restrepo, 2014; West, 1956). 

According to the Colombian Pacific Basin Oceanographic Compilation II (Dimar, 2020) the 

Pacific region can be classified into two distinct morphodynamical regimes related to the 

main hydrodynamic, geographic, and oceanographic conditions: The Northern Pacific and 

Southern Pacific. The Northern Pacific is defined from Panama to Cabo Corrientes with an 

approximate distance of 375 km, characterized by high sloping coast with cliffs, pillars, 

islands, caverns, and littoral arcs, associated with the Baudó ridge (Ingeominas, 1996). To 

the south, between Cabo Corrientes and the border with Ecuador, the coast is framed within 

what is known as the plain Pacific coastline (Dimar, 2020), characterized by an almost flat 

relief, formed by large delta plains and extensive complexes of mangrove marshes, aligned 

parallel to the coastline, generated under a macro-tidal regime (Restrepo & Kjerfve, 2002), 

with gently sloping platforms cut into Tertiary sedimentary rocks (Correa & Morton, 2010). 

Predominant swell environments arrive from the southwest with an average wave power of 

≈  16 𝑥 106 𝑒𝑟𝑔𝑠 𝑠−1   ≈  1.6 𝑊 at 9 m depth (Restrepo & Kjerfve, 2002; Restrepo & 

López, 2008). Significant swells and coastal currents as well as strong El Niño Southern 

Oscillation (ENSO) events causing sea level rise are reported to affect littoral 

morphodynamics (Portilla et al., 2015). The average wave power obtained by field 
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measurements in 3 deltaic systems (San Juan, Mira, and Patía) is roughly 1.6 𝑊 (Restrepo, 

2008). Spectral wave conditions on the Pacific coast of Colombia are reported using a method 

to identify wave features and group them into regimes employing a 2D spectral indicator 

associated with the occurrence probability of spectral partitions (Portilla et al., 2015). They 

conclude that wave characterization by the proposed indicator does not include information 

on wave energy. Hence, regional studies of wave conditions do not focus on wave energy 

variability and its relationship to morphological factors of the nearshore continental shelf and 

Pacific basin. We present this report to broaden the view on wave energy variability, 

availability, and dissipation, as well as its relation to coastal morphodynamics in the Northern 

Pacific coast of South America. 

 

Figure 1. The Pacific oceanic basin and coastline of the Northern Andes at different spatial scales. Some of the 

study sites (red stroke points) shown in the figure represent significant results of each morphodynamically 

classified regime. The stations are located along the continental shelf around the contour line of 15 km of depth 

(specific values of depth for stations 1, 5 9, and 13 are: -224, -62, -1200, -1300 meters, respectively). 
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1.4. Methods: Wave energy flux from wave climate data 

We calculated 𝑃 from data derived from the reanalysis dataset WAVEWATCH III® 30-year 

Hindcast Phase 2. We obtained the wave data from the Earth Engine App Wave-Tide 

(https://jhnienhuis.users.earthengine.app/view/changing-shores), which outputs coastal 

wave parameters from WW3, as well as wave climate exploratory analysis and tidal 

constituents. We used time series of 𝐻𝑠, 𝑇𝑝, and 𝜃𝑝 from 1980 to 2010 with spatial resolution 

of approximately 50 km (0.5° x 0.5°) and temporal resolution of 3 hours. 

Using the wave parameters from WW3 of 𝐻𝑠, 𝑇𝑝 we calculated the wave number (𝑘) to 

further compute the wave energy flux/transport (𝑃 in units of W/m) as (Holthuijsen, 2007 

Eq. 5.5.12 therein), 

 𝑃 = 𝐸𝑐𝑔, (2) 

where 𝐸 = 𝑔𝜌𝐻𝑠/16 (Lentz and Fewings, 2012), 𝑐𝑔 = 0.5𝜔/𝑘 [1 +
2∙𝑘∙ℎ

sinh(2∙𝑘∙ℎ)
] is the group 

velocity, 𝜔 = 2𝜋/𝑇𝑝, and the wavenumber (𝑘) and radian frequency (𝜔) follow the well-

known dispersion relation (i.e. Mei & Black, 1969 Eq. 1.4.11): 

 σ2 = 𝑔𝑘 tanh(𝑘ℎ), (3) 

where ℎ is the water depth, σ is the relative radian frequency, 𝜔 = 𝜎 + 𝑘 ∙ 𝑈, and 𝑈 is the 

time- and depth-averaged current velocity. The exploratory analysis includes wave roses of 

𝑃 vs 𝐷𝑝, 𝐻𝑠 − 𝑇𝑝 − 𝐷𝑝 diagrams of swell and local waves, computation of morphodynamical 

parameters from wave climate statistics, and latitudinal variability of mean 𝑃 values (𝑃𝑚𝑒𝑎𝑛) 

and variability coefficients (COV). The bathymetric data were obtained from the Global 

Multi-Resolution Topography (GMRTMapTool at https://www.gmrt.org/GMRTMapTool/). 

Additionally, we provide a supplementary diagram of the architecture developed as a pipeline 

of pre-processing, processing, descriptive, and predictive stages, attached as an appendix 

(Figure 13). 

https://jhnienhuis.users.earthengine.app/view/changing-shores
https://www.gmrt.org/GMRTMapTool/
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1.5. Methods: Data-driven analytics of wave climate 

1.5.1. Dimensionality-reduction 

We applied the Principal Component Analysis (Pearson, 1901) based on the Singular Value 

Decomposition (SVD) algorithm to obtain a hierarchical coordinate system that captures the 

maximum data variance (Yule, 1938). Based on the SVD, we computed a more robust 

technique called the Dynamic Mode Decomposition (DMD) (Tu et al., 2014). These 

algorithms use the Koopman operator theory that advances the system in time, linearizing 

the solution by calculating a data-driven optimal basis set. The new coordinate system of 

reduced dimensionality constitutes a parsimonious model of reality (Brunton & Kutz, 2017). 

The PCA, and further the DMD, constitutes one of the fundamental numerical matrix 

decomposition techniques in the computational era (Rudy et al., 2017). The goal is to reduce 

dimensionality into the most significant correlation structures (or dominant patterns) 

representing a non-square data matrix as the product of three other matrices. According to 

the SVD, we can define our collection of snapshot measurements of 𝑃 in time as a data matrix 

(𝑋𝑃), such that it can be expressed as the multiplication of three other matrices as: 

 

 𝑋𝑃 = 𝑈Ʃ𝑉𝑇, (4) 

 

where 𝑈 is a unitary matrix with orthogonal columns associated with the spatial realizations 

of 𝑃 (rows), thus called left singular vectors or spatial principal components in this case (also 

denoted as 𝜑𝑟 when truncated into the most critical components 𝑟). The Ʃ represents a matrix 

with real, non-negative values in the diagonal and zeros off the diagonal. These values 

represent the loadings, or “weights” (𝜎), which indicate how much of the original variance 

is explained by each principal component. The 𝑉 matrix represents the right singular vectors, 

or temporal principal components in this case, as their rows are associated with the temporal 

realizations of 𝑃 (columns). 

We used the matrix 𝑉𝑇 from the PCA to compute an optimal coordinate system that best 

represents (in the statistical regression sense) the temporal variability of each continental 
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shelf station (𝑥 = 𝑉𝑇 ∙ 𝑋𝑝(𝑟 = 1), 𝑦 = 𝑉𝑇 ∙ 𝑋𝑝(𝑟 = 2), 𝑧 = 𝑉𝑇 ∙ 𝑋𝑝(𝑟 = 3) ). By 

multiplying each truncated temporal mode or eigen-process (𝑉𝑇) by each station’s time series 

of 𝑋𝑝, we obtain a unique coordinate point representing each station in terms of the first three 

PCA temporal modes in the optimal coordinate system. This representation corresponds to 

the Principal Component Space (PCS), where we statistically model and classify each 

station's unique “fingerprint”. The PCA is often referred to as Empirical Orthogonal 

Functions (EOFs) and is applied to understand various coastal geomorphological phenomena 

(Conlin et al., 2020; Miller & Dean, 2007). 

More sophisticated algorithms, such as the DMD algorithm tries to find the best linear 

operator (𝐴) to advance the data matrix in time, allowing a linear approximation as 𝑋𝑃
′ =

𝐴 ∙ 𝑋𝑃 (Schmid, 2010). DMD goes further from PCA, in the sense that the variability of each 

DMD spatial mode (denoted with 𝜑 as well) is not orthonormal anymore, reproducing only 

specific frequencies that oscillate in a sinusoidal manner like the Fourier transform. This 

representation works as an advantage in physical systems where the modes represent specific 

periodic behavior with a typical growth rate. Nevertheless, PCA’s temporal modes are more 

parsimonious, which is advantageous in applications like Principal Spectral Components 

(PSC) and Reduced-Order Models (ROMs). Thus, we use DMD to identify periodic behavior 

and the complete PCA to classify and describe fundamental patterns in the data. 

In Chapter 2, we use 𝜑𝑟 from the DMD algorithm to obtain a new basis set that optimizes the 

spatial variability in the reduced-order modeling framework. We discover the nonlinear terms 

using sparse regression over a library of candidate terms and obtain a predictive ROM by 

approximating a linear behavior of the fundamental dynamics using Koopman theory and 

Galerkin projections. 

1.5.2. Classification and clustering 

To classify the spatial distribution of 𝑃 in terms of the PCS, we applied the Naïve Bayes 

classifier (Langley, 1993; Langley & Sage, 1994). This technique consists of calculating the 

possible output based on the input. In other words, it can compute the posterior probability 

𝑃(𝑐│𝑥) from a class predictor 𝑃(𝑐), the probability 𝑃(𝑥), and the likelihood 𝑃(𝑥│𝑐). The 
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most important aspect of the technique is that it does not consider relationships between 

features of a given class (Langley, 1993). In our case, it means there is no initial preference 

between the stations (in the PCS) regarding the morphodynamical regime they should belong 

to. 

We then applied the k-means (or Lloyd) algorithm in the PCS to cluster our observations into 

a user-defined number of clusters (k) (Camus, Cofiño, et al., 2011; Camus, Mendez, et al., 

2011; Duda et al., 1995). The algorithm outputs the centroid of each cluster that minimizes 

the distance between the observations and centroids (Brunton & Kutz, 2017). We 

implemented both algorithms in MATLAB® with the “k-means” function and the “fitcnb” 

function from the Machine Learning Toolbox. We use both learning algorithms to (1) 

corroborate the physical intuition of previous morphodynamical classifications and (2) 

provide statistical models to classify new data. The developed data architecture encompasses 

a previous morphological classification, supervised and unsupervised learning, and a new 

optimal coordinate system to represent the data. This architecture aims to elucidate the 

relation between coastal morphodynamical regimes and oceanographic regimes based on the 

fundamental behavior of 𝑃. 

1.6. Methods: Wave-induced coastal morphodynamics 

We quantified the alongshore sediment transport, 𝑄𝑠 (in units of kg s-1), using the CERC 

equation (Komar & Holman, 1986) modified to deep-water wave properties (Ashton et al., 

2001) as: 

 

 𝑄𝑠 = 𝐾1 ∙ 𝜌𝑠 ∙ (1 − 𝑝) ∙ 𝐻𝑠

12
5 𝑇𝑝

1
5 ∙ cos  

6
5(𝜙0 − 𝜃) ∙ sin (𝜙0 − 𝜃) (5) 

 

where  

 𝐾1 = 5.3 × 10−6 ∙ 𝐾 (
1

2𝑛
)

6
5

(√𝑔𝛾𝑏/2𝜋)1/5 (6) 
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is an empirical constant based on 𝐾 = 0.46𝜌𝑔3/2, where sediment and water density are 

denoted by 𝜌𝑠 and 𝜌 (kg m-3), respectively, the dry mass void fraction is 𝑝, 𝑔 is the 

gravitational acceleration (m s-2), 𝛾𝑏 is the ratio of breaking wave height and water depth 

(𝛾𝑏 = 0.78), and 𝑛 is the ratio of group velocity to phase velocity of the breaking waves (1 

in shallow water), 𝜙0 is the deep-water wave approach angle, and 𝜃 is the local shoreline 

orientation. Both angles are azimuth, even though the metrics used are in terms of the relative 

incoming wave angle (𝜙0 − 𝜃). 

Plan-view coastal change depends on wave-induced (direction controlled) sediment 

reworking along the coastline (Nienhuis et al., 2016). For example, high-angle wave 

instability in shoreline shapes results in naturally occurring coastal landforms such as flying 

spits and capes (Ashton et al., 2001). Waves approaching the shore from different angles over 

time contribute to 𝑄𝑠, either to the left or right flank. Integrated over time, the relative 

contribution of each wave direction to the alongshore sediment transport is given by the wave 

energy probability density distribution as (Nienhuis et al., 2015 Suppl. Information): 

 𝐸(𝜙0) =
𝐻𝑠

12
5 (𝜙0) ∙ 𝑇𝑝

1
5(𝜙0)

∑ 𝐻𝑠

12
5 (𝜙0) ∙ 𝑇𝑝

1
5(𝜙0)𝜙0

 (7) 

Additionally, we calculated the inner and outer depth of closure (DoCi and DoCo) according 

to Valiente et al. (2019) but defined by Hamon-Kerivel et al. (2020) as: 

 

 𝐷𝑜𝐶𝑖 = 2.28𝐻𝑠 − 68.5(
𝐻𝑠

2

𝑔𝑇𝑝
2⁄ ) (8) 

 

 𝐷𝑜𝐶𝑜 = (𝐻𝑠 − 0.3𝜎𝐻)𝑇𝑝(
𝑔

5000𝐷⁄ )0.5 (9) 

 

where 𝑔 is the acceleration due to gravity, 𝜎𝐻 is the standard deviation of the significant 

height, and 𝐷 the sand diameter; to find the seaward limit of wave-induced morphological 

change at mesoscale for each coastal station wave climate and geologically controlled 
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continental shelves. Since WW3 produces an offshore regime of wave parameters, we 

compared and correlated each station's maximum width of the continental shelf with the 𝐷𝑜𝐶 

to evaluate the sediment accommodation availability of the shoreface at each station. We aim 

to evaluate the significant sediment exchange in high energy wave patterns associated with 

morphodynamical regimes. 

1.7. Methods: Climate-driven periodic variations 

The time series analysis consists of a Butterworth filter to obtain seasonal to decadal behavior 

of interest. The signal processing technique is also referred to as a maximally flat magnitude 

filter introduced by Stephen Butterworth (1930). We compare ordinary (or raw) data with the 

filtered time series to identify noise and frequencies of interest. 

Since the teleconnection indices (i.e., ONI for ENSO) represent anomalies in variables of 

interest, we first normalized 𝑃 to represent anomalies around a central statistic by applying a 

modified detrending process (Vega et al., 2020). We refer to these data as the Monthly Mean 

Normalization (MMN) time series. We calculated the mean energy flux value of every month 

for a decade and then subtracted it from every same month. After removing the monthly 

mean, we applied a normalization to represent the variability with zero means. We then 

calculated the wavelet coherence and correlation between the Anomalies, PCA modes, 

ordinary time series, and the Oceanic Niño Index (ONI), to analyze the atmosphere-ocean 

coupling driving wave energy variability. 

Wavelet transform (Torrence & Compo, 1998), or multiresolution spectral analysis, is the 

most robust technique to obtain the frequency content present in a signal (Kumar & Foufoula-

Georgiou, 1997; Vega et al., 2020). It has significantly changed the way data science deals 

with compressing sensing and representing time series in the digital era (Brunton et al., 2020). 

Like the Fourier transform and the PCA, the wavelet basis is an orthogonal decomposition 

that includes a multiresolution graphical representation of the signal, assuming that large 

frequencies do not require time resolution. We used the wavelet transform as the primary 

spectral analysis technique and the Fourier transform as a corroboration of the results 

obtained in the wavelet analysis. We used the MATLAB® implementation of the wavelet 

analysis provided by Grinsted et al. (2004) and Torrence and Compo (1998), which includes 
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a Monte Carlo test for statistical significance. We focus our results on the wavelet coherence 

between the ONI and the ordinary variability of 𝑃, specifically on the quantification of the 

phase-lag (or time-lag). We use the arrow convention of 0° in the eastern direction. Each 

frequency resolution of the wavelet coherence (y-axis in Figure 8) would be equal to 2𝜋, to 

compute the time-lag from the phase-lag. 

In our case, the natural frequency of our physical system, according to the number of data 

elements (87,600) and the sampling period (3 h), is 𝑓0 = 0.033 𝑐𝑝𝑦, meaning we can resolve 

a maximum frequency of ~3 cycles per century (1 cycle every ~30 years) according to the 

Shannon-Nyquist sampling theorem (Thomson & Emery, 2014). Similarly, the Nyquist 

frequency is 𝑓𝑁 = 4 𝑐𝑝𝑑. Since we are interested in periodic variations related to ENSO, we 

focused on the amount of energy within 2-to-4-year periods for the warm El Niño phase and 

4-to-8-year periods for the cold La Niña phase. This way, we identify specific events of 

intense ENSO phases related to 𝑃 dynamics along the Pacific coast of the Northern Andes. 

1.8. Results and discussion: Statistical trends and correlations 

The decadal average inner and outer depth of closure or DoC (DoCi and DoCo, respectively 

in Table 1) are computed using an average sand diameter of 0.001 meters, and hourly time 

series of 𝐻𝑠 and 𝑇𝑝 for 30 years. We observe that latitudinal changes explain 83% and 85% 

of the variability in DoCi and DoCo, respectively. Assuming the simulated wave parameters 

reach the shoreface with similar values, the upper shoreface starts around 2 meters in depth 

and ends around 10-to-20 meters in the continental shelf. Comparing these results with the 

morphological parameters in Table 1, we assume that the wave climate present at the inner 

shoreface is approximately the same as in the outer shoreface Meaning wave hydrodynamics 

can be considered in our morphodynamic implementation. 

Table 1 presents wave and geomorphological parameters from the 13 stations along the 

Northern Andes Pacific coast. Observations of these statistical parameters indicate that 𝐻𝑠, 𝑇𝑝 

increases with latitude (from 0.8 to 1.2 m and 11.1 to 14.6 s, respectively), suggesting a S-N 

rise in wave energy. A strong negative correlation between the continental shelf width and 

average 𝑃 (𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛 = −0.74, 𝑟𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 = −0.86 and 𝑅𝑀𝑆𝐸 = 24.07) supports the idea 

that shoreface morphology, largely controlled by the compressional geologic setting (Correa 
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& Morton, 2010), exerts control on 𝑃 variability, likely by bottom friction and dissipation of 

swell (Ardhuin et al., 2003). 

The decadal average inner and outer depth of closure or DoC (DoCi and DoCo, respectively 

in Table 1) are computed using an average sand diameter of 0.001 meters, and hourly time 

series of 𝐻𝑠 and 𝑇𝑝 for 30 years. We observe that latitudinal changes explain 83% and 85% 

of the variability in DoCi and DoCo, respectively. Assuming the simulated wave parameters 

reach the shoreface with similar values, the upper shoreface starts around 2 meters in depth 

and ends around 10-to-20 meters in the continental shelf. Comparing these results with the 

morphological parameters in Table 1, we assume that the wave climate present at the inner 

shoreface is approximately the same as in the outer shoreface Meaning wave hydrodynamics 

can be considered in our morphodynamic implementation. 

Table 1. Wave and geomorphological parameters used in the present study, shown as latitudinal changes with 

a spatial resolution of 0.5°N x 0.5°W. Data include the average significant height (𝐻𝑠), average peak period 

(𝑇𝑝), depth at buoys location, average wave energy flux (𝑃), variability coefficient, and maximum width of the 

continental shelf. 

Station Coord. 

(lat, lon) 

Mean 

𝐻𝑠 [m] 

Mean 

𝑇𝑝 [s] 

Depth 

[m] 
Mean 𝑃 

[W/m] 

COV 

[%] 

Shelf width 

[km] 

DoCi 

[m] 

DoCo 

[m] 

1 (1.5°N, -

79°W) 

0.7 11.1 223 0.46E+4 62 96 1.38 8.42 

2 (2°N, -

79°W) 

0.9 12.2 494 0.92E+4 57 87 1.89 13.09 

3 (2.5°N, -

78.5°W) 

0.9 10.6 80 0.62 E+4 62 67 1.57 9.22 

4 (3°N, -

78°W) 

0.7 10.8 127 0.57E+4 64 116 1.54 9.06 

5 (3.5°N, -

77.5°W) 

0.7 10.2 62 0.45E+4 63 67 1.38 7.53 

6 (4°N, -

77.5°W) 

0.8 12.2 267 0.68E+4 60 47 1.64 10.98 

7 (4.5°N, -

77.5°W) 

0.8 13.1 618 0.82E+4 60 40 1.73 12.60 

8 (5°N, -

77.5°W) 

0.9 13.8 924 1.07E+4 64 31 1.91 14.94 
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9 (5.5°N, -

77.5°W) 

0.9 14.0 1193 1.13E+4 64 15 1.95 15.55 

10 (6°N, -

77.5°W) 

0.9 14.1 1759 1.05E+4 64 21 1.87 14.94 

11 (6.5°N, -

77.5°W) 

0.9 14.4 651 1.29E+4 68 29 2.04 16.92 

12 (7°N, -

78°W) 

1.1 14.5 2487 1.89E+4 72 19 2.45 20.87 

13 (7°N, -

78.5°W) 

1.2 14.6 1374 2.03E+4 70 10 2.55 21.81 

          

From directional histograms, also known as wave roses of 𝑃 (Figure 2A), we observe the 

angular distributions of incoming waves from different directions (between ~240°𝑁 and 

~300°𝑁) at lower latitudes (from station 1 to 5). In contrast, at higher latitudes or Northern 

stations (stations 11 to 13), most of the energy arrives at a similar incoming angle (~220°𝑁). 

Interestingly, middle latitudes (stations 6 to 10) present a steady transition between both 

regimes (Northern and Southern stations) showing different morphologies. Suggesting the 

need to model the transition (Middle stations) to better understand the wave dissipation 

mechanisms associated with sediment fluxes, geologic characteristics, shoreface bedforms, 

and wave climate metrics. From exploratory results and statistical models applied on wave 

and geomorphologic parameters, we observe a clear trend of negative correlation between 

continental shelf width and wave energy flux. Suggesting that long-term coastal variability 

related to mesoscale morphodynamics appears to be mostly driven by swell energy, while 

local behavior requires further measurements to accurately assess its variability and forcing 

factors. Consequently, we focus on modeling hidden and leading-order variables in swell 

energy driving mesoscale changes in the continental shelf's morphology, to further evaluate 

long-term wave-induced coastal evolution. 
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Figure 2. Exploratory analysis on wave climate reanalysis data at the Northern Andes Pacific coast. (A) 

Directional histograms of P angular distribution in stations 1, 5, 9, and 13 showing directional changes of the 

incoming waves. (B) Latitudinal changes of statistical parameters (mean and variability coefficient) from swell 

and local P, with a linear regression model for both wave environments (R2=0.74 for swell and R2=0.56 for 

local waves). (C) 𝐻𝑠 − 𝑇𝑝 scatter diagrams for wave environment characterization at different stations along 

the coast, including the main directions of variance from the PCA (cyan lines). (D) 𝐻𝑠 − 𝑇𝑝 − 𝐷𝑝 diagrams 

highlighting swell and local wave evolution trends. 

We classified swell and local waves in terms of 𝑇𝑝 (local waves: 0 < 𝑇𝑝 < 10𝑠 and swell: 

10 < 𝑇𝑝 < 20𝑠), as suggested by Holthuijsen (2007) in Chapter 3 Section 1.3, to observe the 

general dissipation mechanics of both short-wave types as latitude increases (Figure 2B). We 

find that swell carries most of the energy in the 30-year evolution of 𝑃 along the Pacific coast 

of the Northern Andes (almost one order of magnitude more than local waves). We also 

corroborate that morphological changes of the continental shelf do not influence local wave 

evolution nearly as much as swell. As shown before, swell energy appears to dissipate in 

three distinct morphodynamical regimes: Stations 1 to 5 (Southern regime), stations 6 to 9 

(Middle regime), and stations 10 to 13 (Northern regime). 
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Swell arrives mainly undisturbed to the nearshore (Portilla et al., 2015). Thus, the dissipation 

(and consequent reduction of swell energy) increases over the transition from narrow 

continental shelves at higher latitudes to larger widths at lower latitudes. In the Northern 

Pacific basin, the Galapagos Island serves as an energy dissipation landform that produces 

wave diffraction, creating interference of new wave fronts with the undisturbed swell (Dimar, 

2020 Chapter IV). Bragg scattering also plays a fundamental role since it is included as a 

source term in WW3, accounting for resonant triad interactions with the bottom component 

that produces energy exchanges between waves with similar radian frequency (Ardhuin et 

al., 2003). We argue that both mechanisms contribute to the observed latitudinal reduction in 

swell energy. As latitude decreases, larger widths of the continental shelf dissipate swell 

energy, and the temporal variability increases to almost 65%. Swell energy dissipation by 

bottom friction occurs more significantly over large continental shelves in the Southern and 

Middle regimes. From these exploratory analyses, we observe the expected behavior of 

morphologically driven wave energy dissipation. However, swell, and local waves seem to 

be reduced substantially around Buenaventura Bay (station 5), possibly due to destructive 

phase interference caused by the Galapagos island’s dissipative effects. 

Table 2. Analysis of variance (ANOVA) applied to the linear regression model of swell and local energy flux 

latitudinal variability. The statistical parameters used to assess the analysis of variance and obtain the goodness 

of fit are the coefficient of determination (𝑅2), the root mean squared error, the p-value, t stat value and Fisher 

test value, as well as the correlation coefficient (r), the model’s equation (𝑦 = 𝑓(𝑥)) and the degrees of freedom. 

Statistics/Variables Swell Energy vs Latitude Local Energy vs Latitude 

𝑅2  0.74  0.56  

RMSE 1.296e+03 2.648e+02 

SST 37204568 368063.4 

p-value 0.1352 3.75e-06 

t stat slope 1.61 8.47 

F-fisher 22.1356 5.2481 

Pearson coefficient (r) 0.81 0.71 

Regression equation 𝑦 =  1510.17 +

 904.258 𝑥  

𝑦 =  1621.69 +

 89.9406 𝑥  

Degrees of freedom 12 12 
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We further applied a linear regression regularizing least squares to model 𝑃𝑚𝑒𝑎𝑛 in terms of 

latitudinal changes (Figure 2B and Table 2). We assessed both exploratory and model 

evaluation analyses using the goodness of fit metrics between simulated and measurement 

results. The statistical model shows that latitudinal changes explain 56% of local and 74% of 

swell variability. From the ANOVA applied to the linear regression in (The decadal average 

inner and outer depth of closure or DoC (DoCi and DoCo, respectively in Table 1) are 

computed using an average sand diameter of 0.001 meters, and hourly time series of 𝐻𝑠 and 

𝑇𝑝 for 30 years. We observe that latitudinal changes explain 83% and 85% of the variability 

in DoCi and DoCo, respectively. Assuming the simulated wave parameters reach the 

shoreface with similar values, the upper shoreface starts around 2 meters in depth and ends 

around 10-to-20 meters in the continental shelf. Comparing these results with the 

morphological parameters in Table 1, we assume that the wave climate present at the inner 

shoreface is approximately the same as in the outer shoreface Meaning wave hydrodynamics 

can be considered in our morphodynamic implementation. 

Table 1), we can obtain statistical significance based on the null hypothesis that both 

distributions share a constant slope. In swell energy, the regression model presents a value 

of 1.61 that satisfies a 95% significance confidence for the slope for 12 degrees of freedom. 

The p-value of 0.13 and F-fisher value of 22.13 also support the null hypothesis and decision 

rule that the model explains 74% of the variability. In other words, since there is a significant 

linear relationship between the variables, we can statistically model the overall spatial 

variability trend of 𝑃 using latitudinal changes (Figure 2B) in the Northern Andes Pacific 

coast. 

From the wave roses of 𝑃 and the 𝐻𝑠 − 𝑇𝑝 − 𝐷𝑝 diagrams (Figure 2D), we could argue that 

the local wave energy diminishes as latitude increases. Rather, the latitudinal changes of 

statistical parameters in Figure 2C show that local wave energy moves around the same 

values along the continental shelf. Therefore, the decreasing number of observations appears 

from either an artifact of the model time-stepping scheme or the distributions only show a 

more substantial presence of undisturbed swell arriving at higher latitudes (Northern regime). 

All data visualization results suggest considerable local wave energy at lower latitudes, 

decreasing as swell energy increase at higher latitudes. 
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1.9. Results and discussion: Morphodynamic classification of coastal regimes 

Since our goal is not to reconstruct the specific temporal and morphodynamical behavior, but 

rather to classify the different patterns in the evolution of the morphodynamical system, we 

apply a dimensionality reduction to adequately assess the hierarchical patterns in the 

incoming wave energy variability. Figure 3 shows the obtained dimensionality reduction of 

the 13 stations along the coastline associated with each morphodynamical regime 

highlighted. The first three PCs show predominance over the other singular values from the 

hierarchical decomposition (Figure 3B). Explaining 95% of the total variability, according to 

the cumulative percent of the variance of the singular values. 

 

Figure 3 Data-driven modal decomposition of wave climate data at the Northern Andes Pacific basin and 

coastline. The singular value decomposition (SVD) from both PCA and DMD algorithms produces a 

dimensionality reduction space (A) to express the fundamental variability trends in the data. From the singular 

values (B) we observe that most of the energy is captured by the first four PC, explaining almost 95% of the 
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total variability. PCA and DMD modes (C) represent dynamic patterns in spatio-temporal variability of P in the 

basin’s seafloor topography (D), showing fundamental variabilities related to physical processes. 

This result indicates that we can effectively reduce the dynamical system from 13 partial 

differential equations (PDEs) to 3 ordinary differential equations (ODEs) and represent 95% 

of the total variability. Thus, the model composed of the first modes represents fundamental 

patterns or hidden variables in the system. Here, we use this as an advantage to classify the 

coastal stations in the PCS (Figure 3A) to compute statistical and machine learning models 

for the morphodynamical regimes. 

We computed the first four spatial modes (both PCA and DMD) for the whole Pacific basin 

of the Northern Andes and coast, as illustrated in Figure 3C and E, and Figure 3D and F. We 

found similar spatial variability between PCA mode 1 and DMD mode 2, PCA mode 4 and 

DMD mode 2, and PCA mode 2 with DMD mode 4. The critical aspect of these similarities 

is the differences between the dimensionality reduction algorithms and their associations to 

the temporal modes. DMD spatial modes represent better the physical processes (Tu et al., 

2014), but its temporal information can be correlated and represented as a spectrum of 

defined frequency values. Therefore, since the temporal modes of the PCA are not correlated 

(orthonormal), and the spatial DMD modes represent better physical processes, we use the 

temporal modes of the SVD associated with the spatial modes of the PCA and DMD to 

compute the PCS and the Reduced-Order Model (ROM). 

We observed the incoming swell of the basin reaching the coast in PCA mode 1. The PCA 

mode 2 appears to represent a latitudinal bimodal variability that could be related to the 

Intertropical Convergence Zone (ITCZ). The PCA mode 3 could be related to the energy 

from the reflected waves on the continental shelf. On the other hand, the DMD mode 1 

suggests the effects of a source/sink of variability around the longitudinal trenches found near 

5°N. The Malpelo island and ridge could also influence this behavior in the DMD modes 

(modes 1 and 2) as a dissipative source of the basin. All modes appear to represent wave 

dynamics related to the continental shelf morphology. 

From the PCS, we generated three modeling approaches for classifications of the 

morphodynamical coastal regimes: empirical (Figure 3A), supervised, and unsupervised 

(Figure 4A and B, respectively). From previous characterizations of wave-induced 
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morphodynamics along the Pacific coast (Correa, 1996; Correa & Morton, 2010) we propose 

three regimes, i.e., Southern, Middle, and Northern, to label the data in the supervised 

classification by the Naïve Bayes algorithm. We observe that the Middle regime presents the 

largest statistical variance centroid, which we interpret as representing the boundary between 

Southern and Northern conditions. To obtain more statistical significance around the 

computed centroids, we also applied the unsupervised learning algorithm k-means clustering. 

This way, we regularized around three clusters -or regimes- with 𝑘𝑐 = 3 to then confront the 

previous classification with our computational clustering. We observe similar behaviors, 

interpreted as robust corroboration of the proposed regimes. 

The final classification considers both centroids to compute the statistical model. The main 

difference between the supervised and unsupervised techniques is that the Southern regime 

(red cluster) should include stations 6 and 7, enlarging the boundary evolution of the Middle 

regime (green cluster) away from the Southern regime (red cluster). This result confirms the 

statistical significance of the pioneer geologic and morphodynamic characterization of wave-

driven coastal evolution (Correa & Morton, 2010). It does so by grouping the stations into 

morphodynamical regimes obtained from the spatio-temporal variability of 𝑃. 

 

Figure 4. (A) Supervised and (B) unsupervised learning algorithms applied to the PCS of coastal P. The Naïve 

Bayes Classifier uses the previous expert classification of empirical coastal regimes provided as labels to obtain 

statistical significance on three distinct regimes. The K-means clustering algorithm provides a data-driven 

classification of each station based on regularizing over the input of clusters (k=3) and returning the best fit 

class of each station. This approach aims to corroborate the morphodynamic classification. 
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From Figure 5A, we observe patterns in the PCS for the whole Pacific basin of the Northern 

Andes. The fundamental pattern emerging in the PCS illustrates trajectories in the basin 

represented as spatio-temporal coherent structures, which we can model to observe 

dissipation trends and wave evolution across several stations. Using both a multivariate linear 

regression or Sparse Identification of Non-linear Dynamics - SINDy, by Brunton et al. 

(2016), we can obtain a linear model and partial differential equations to predict the dynamic 

trajectory of the incoming P within the basin. This approach would produce an interpolation 

model to obtain wave-induced morphodynamics from new time series data. 

 

Figure 5. Principal Component Space of 101 stations of wave energy flux (𝑃) variability along the Pacific 

oceanic basin of the Northern Andes. We highlight the longitudinal variability in blue, and the average incoming 

wave angle (𝜙0~300° Azimuth) in red. Panel A presents all 101 locations on the Pacific basin as a structural 

dynamic pattern of the system, including the highlighted trajectories. The PCS conveys a well-defined pattern 

representing the fundamental variabilities explained by the first three PCs (90% of the total variability). In this 

optimal, reduced-order coordinate system, we can model and classify 𝑃 changes along the basin and observe 

the dissipation behavior along the continental shelf 

Assuming that the fundamental patterns in 𝑃 dynamics dictate coastal gradients in alongshore 

sediment transport, we classify the low-dimensional representation (PCS) into the three, 

previously mentioned morphodynamical regimes. We argue that this classification would 
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serve as a basis for assessing future wave-induced coastal evolution scenarios. Figure 6 

presents the proposed association of morphodynamical classification, sediment transport, and 

wave-climate metrics of coastal features to wave climate. The satellite images of the Pacific 

coast of the Northern Andes are free to access by the USGS Earth Explorer platform 

(https://earthexplorer.usgs.gov/). 

We recall that the Northern morphology, on the western flanks of the Baudó Range (Serranía 

del Baudó), is composed predominantly of oceanic basalts, diabase, and associated cherts 

and radiolarites. Also, south of the Baudó Range, the relief of the Pacific Coast exhibits 20–

100 m high hills cut into Tertiary sedimentary sequences (Correa & Morton, 2010). Our 

results on wave-induced morphodynamics along the Northern regime show high sediment 

transport values and stable coastal response. However, we highlight that the geological 

setting and sediment characteristics, not considered by the applied metrics, would likely 

overestimate sediment transport for the Northern regime. In contrast, coastal relief on the 

Central regime includes the three major Plio-Quaternary deltaic prisms of the San Juan, Patía, 

and Mira rivers. Which suggests a more accurate representation of sediment transport and 

shoreline instability shape formation on the Middle and Southern regimes. 

Extensive, highly unstable, sandy barrier islands and muddy tidal flats are common at all the 

main tidal inlets of the Pacific Coast (Morton et al., 2000). All the barrier islands in the 

Middle and Southern Pacific coast have experienced critical morphological changes in the 

last century that implied erosional and accretional events at specific locations (Restrepo & 

López, 2008). For example, at the San Juan delta (Figure 6, lower part of the Middle regime), 

significant morphological changes have occurred during the last 30-year period, including 

shoreline retreat, barrier islands narrowing, and breaching (Restrepo & Cantera, 2013; 

Restrepo & López, 2008). Previous evidence indicates periodic coastal features as beach 

ridge systems along the Pacific coast. We corroborate these observations with the instability 

of wave climate computed for the Southern and early Middle regimes (Figure 6). We observe 

that 180° coasts with 130° to 180° incoming wave climate produces high instability metrics 

associated with periodic morphological changes. This is the case for most of the central coast 

of the Northern Andes South American basin. 

https://earthexplorer.usgs.gov/
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Figure 6. Morphodynamical classification of coastal regimes using wave climate metrics of alongshore 

sediment transport (Qs) and directional energy (E) versus relative incoming wave angle (Φ0-θ). In colors, we 

represent the distinct regimes classified to relate specific morphodynamics conditions. Stable morphodynamics 

(Northern regime in blue), the transition between stable and unstable morphodynamics (Middle regime in 

green), and unstable morphodynamics (Southern regime in red). 
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From wave climate metrics, we show that Colombia's Pacific coast presents instabilities on 

the Southern and early Middle regimes. The specific shoreline orientation of the Pacific coast 

of South America (𝜃 ≥ 180) and the high breaking wave angles (𝛷0 − 𝜃 ≥ ±45) produce 

gradients in alongshore sediment transport that result in unstable geomorphological features, 

such as spits, dynamic barrier islands and swamps, inside very complex littoral cells. We find 

that this unstable behavior slowly decreases as latitude increases, where the shoreface is 

controlled by the geological setting. 

Additionally, we observe that the compressional margin that produces a deep trench with a 

small shoreface also results in a small transitional zone where sediment accommodation is 

generally limited, suggesting that seasonal variations in wave climate and storm events likely 

interact with the small surf zone or upper shoreface sediment to produce the resultant local 

trends in the morphodynamical regimes. While decadal variations of 𝑃-driven sediment 

fluxes are mostly produced by the tectonic setting of the compressional margin and its deep 

trench formations, explaining the resultant swell dissipation trends and latitudinal variability. 

1.10. Results and discussion: Climate-driven variability related to the ENSO 

To adequately assess the temporal variability of 𝑃, we apply spectral, data-driven, and time-

series techniques to identify the periodic behavior related to climate forcing. Figure 7 shows 

significant coherence in seasonal and intra-annual variability, as well as a strong La Niña 

phase around 1997. The computed average phase lag of 𝜋/2 (or time lag of 8 months) 

between both time series at around 32 months suggests that 𝑃 responds to strong ENSO 

events, as expected (Caicedo‐Laurido et al., 2019). Furthermore, wavelet results show that 

the phase-lag varies in time, exhibiting different behaviors for both ENSO events. La Niña 

evidences an average phase-lag of ~90° at ~3 −year periods, corresponding to a time-lag of 

9 months. In contrast, for El Niño events, the phase varied from ~90° to ~270°, 

corresponding to time-lags of 4 and 12 months for ~16 −month periods. 
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Figure 7. Time series of 𝑃, ONI, and wavelet coherence between them. (A) Temporal evolution of filtered 

variability of 𝑃 (Ordinary Variability: OV and Seasonal Variability: SV), anomalies from monthly mean 

normalization (MMN), and the first four PCA modes from 2007 to 2010. (B) Wavelet coherence between 

ordinary variability of 𝑃 and the ONI. 

Figure 8 presents the 95% significant (segment-averaged) and ordinary Fourier spectrums 

(panel A and B, respectively). We computed the significant spectrum to obtain robust spectral 

trends, while the ordinary spectrum was computed to identify peaks of present periodic 

behavior in the complete interval of spectral resolution. We observe strong diurnal tidal 

behavior (360 cycles per year) related to tidal constituent k1, with decreasing presence of 

semi-diurnal tides (720 to 1080 cycles per year) related to tidal constituent m2 and n2. From 

the Averaged Fourier Spectrum (Figure 8A) we deduce that lower frequency (from 12 to 0.05 

cycles per year) presents low resolution due to swell superposition over 30 years. 

Nevertheless, we observe a clear increase of spectral density in the low-frequency regime as 

latitude increases, showing less tidal presence (360, 720, and 1080 cycles per year) and 

stronger low frequencies at higher latitudes (Middle and Northern regimes). 

We also computed the DMD spectrum (Figure 8C). We obtained significant frequencies in 

both spectrums (DMD and Fourier) of 1 and 2 cycles per year (seasonal variability). Fourier, 

Wavelet, and DMD results show a range of low frequencies from 0.5 to 0.1 cycles per year 

(2 to 10 years every cycle), meaning wave climate variability shows the presence of synoptic 

behavior likely related to ENSO phases and Madden-Julian oscillations. The overall spectral 

analysis performed using the SVD, Wavelet, and Fourier basis present similar behaviors, 
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meaning the time series data was accurately pre-processed and processed, and the results are 

statistically significant. 

 

Figure 8. Spectral decompositions in the Fourier basis (A and B) and DMD basis (C). Fourier transform of 𝑃 

presents substantial intra-annual variability, with significant frequencies related to seasonal trends (1, 2, and 3 

cycles per year) and tidal behavior (360). The DMD spectrum also presents similar results: monthly variability 

(15 and 31 cycles per year), and seasonal variability (2 cycles per year). 

Figure 9 summarizes the Wavelet analysis performed on the latitudinal stations by showing 

the main differences in Wavelet transforms (column 1), coherence (column 2), and 

correlation (column 3) between stations 1 and 13, and ONI time series, representing each 

extreme regime (Southern and Northern, A and B respectively). We also present the Wavelet 

analysis performed on the PCA temporal modes (Figure 10) to relate and identify the 

fundamental dynamics of P related to climate-driven periodic behavior driven by the ENSO. 

Wavelet transform (Figure 9 – Column 1), computed with a significant threshold of 

frequencies from the Monte Carlo test, supports the idea that the fundamental variability and 

spectral components in wave climate are driven by seasonal, and synoptic or mesoscale 

variability patterns. We identify substantial seasonal (4 to 6 months) and moderate La Niña-

related periodicities (3 to 5 years) in the Southern regime. In comparison, we observe 

significant annual variability (12 months) and moderate El Niño-related periodicities (12 to 

16 months) in the Northern regime. By following the Wavelet transform of the anomalies 

obtained from the MMN, we also identify significant La Niña anomaly events present in the 

Northern regime. Both regimes present similar average time lags (approximately 90°, or 8 
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months) in significant periods related to La Niña events, showing a more considerable 

Wavelet coherence (Figure 9– Column 2) at higher latitudes. 

 

Figure 9. Table format to visualize wavelet transform, coherence, and correlation between time series of 𝑃 and 

the ONI, with Monte Carlo statistical significance. Ordinary variability and Anomalies are compared between 

stations 1 (Panel A) and 13 (Panel B) to identify changes in response between lower and higher latitude wave 

energy. 

From the Wavelet transform of the ordinary variability of 𝑃 (first and third row), we observe 

seasonal periodicities from 6 to 8 months in both regimes. Nevertheless, station 1 shows a 

more significant and almost constant annual variability (around 12 months). This result 

suggests that local waves, which are more present in the Southern regime, appear to be driven 

mainly through annual and inter-annual variabilities (6-to-12-month periods), while swell 

seas are modulated mostly by synoptic periodicities (2-to-10-year periods). 

Figure 10 shows the first five (5) PCA modes, illustrating the presence of similar periodicities 

compared to El Niño phase with a significant correlation between 12 to 16 months. PCA 

modes present coherence with El Niño phases, with a time lag of 24 months. 
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Figure 10. Table format to visualize wavelet transform, coherence, and correlation between temporal PCA 

modes of 𝑃 and the ONI, with Monte Carlo statistical significance. Modal variability is compared between 

stations 1 and 13, showing no significant difference. Consequently, the temporal modes correlation and 

coherence with the ENSO index shows climate-driven behavior related to warm and cold phases, together with 

interannual feedback responses. 

1.11. Conclusions 

We find evidence that the spatial variations of 𝑃 along the continental shelf of the Pacific 

Northern Andes show three apparent morphodynamical regimes, divided into Southern, 

Middle, and Northern latitudes. This result agrees with previous morphodynamical and 

hydroclimatic classifications (Correa & Morton, 2010; Dimar, 2020 Chapter I and IV), yet 

we propose the addition of the Middle regime to express and model the changing boundary 

using sediment transport metrics and shoreface evolution between the two distinct behaviors 
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in the Northern and Southern regimes. We observe an almost linear trend of increasing 

sediment transport and average 𝑃 as latitude increases, and we find that continental shelf 

width decreases linearly as well. The same behavior is found between latitudinal changes and 

depth of closure, with an increasing trend of DoC as latitude increases. This dissipation 

behavior appears mostly driven by the deep trenches along the compressive continental shelf, 

suggesting that the tectonic activity controls most synoptic and mesoscale wave energy 

variability in the Pacific coast of Northern South America. Likely illustrating a decreasing 

trend in wave-induced morphological effects on coastal evolution as latitude increases. 

Since global reanalysis datasets like WW3 do not accurately represent nearshore wave 

environments, rather representing lower shoreface incoming waves corresponding to deep 

water waves from nonlinear wave-wave interactions. Therefore, the morphodynamical and 

wave climate metrics we apply to compute the sediment transport and high-angle wave 

instability for large-scale coastal systems fail to quantify accurately local processes. This 

allows a general morphodynamical relation, based on large-scale coastal feature and lower 

shoreface evolution, but fails to represent medium and short-scale wave-induced coastal 

morphodynamics. Nevertheless, our focus is to understand mesoscale variability trends along 

the continental shelf and the spatio-temporal, wave-induced coastal feature evolution 

scenarios at mesoscale in the Pacific basin and coast of the Northern Andes compressional 

margin. 

On the data-driven analysis, physical processes can be observed in the DMD and PCA modal 

analysis, such as the dissipation of 𝑃 by longitudinal trenches in the oceanic basin, and the 

ITCZ latitudinal variability. Both processes are equally identified as periodic behavior in 

spectral analysis. We observe stronger La Niña-related coherent periodicities within P around 

the Southern regime. While the Northern regime shows a stronger presence of El Niño-

related periodicities. This hints that local wave energy might be more affected by La Niña 

phases in the ENSO, contrary to swell energy that seems to be more coherent with El Niño 

phases on the Pacific coast of the Northern Andes. The reported 𝑃 response to ENSO climate 

variability may contribute to the development of early-warning systems of high energy wave 

events along the Pacific coast of Northern South America. 
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2. Chapter 2: Data-Driven Model from Reduced-

Order Dynamics of Wave Energy Flux along 

Compressional Shelves 
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Abstract 

We present a data-driven modeling architecture of wave climate variability along 

compressional continental shelves based on a dynamical system definition for the wave 

energy flux, 𝑃 in W/m, with {𝑃 ∈ ℝ|𝑃 ≥ 0}. We use wave energy flux data calculated from 

wave statistics, a reanalysis model of wave dynamics from discrete spatial locations and time 

realizations. We determined the functional form of the governing equation from sparse 

regression methods, numerical differentiation schemes, and model selection metrics to 

predict its reduced-order dynamics in time and space. Further, we used a dimensionality 

reduction architecture to train the algorithm and numerically solve a linear, low-rank, 

parsimonious representation of the nonlinear system of interest. We applied the reduced-

order model, trained with data from 1980 to 2000 and several distributions of 𝑃 along the 

continental shelf of the Northern Andes Pacific compressional margin. We forecast 

significant results to 2010 evaluated against high-fidelity simulations (𝑁𝑅𝑀𝑆𝐸 = 15.14%). 

We finally apply our data-driven architecture to predict scenarios of alongshore distribution 

of 𝑃, corroborating the wave-induced morphodynamics regimes proposed by pioneering 

observations. 

2.1. Introduction  

The dynamical systems approach to study Earth systems provides a rigorous mathematical 

framework to describe and understand natural phenomena (Holmes, 2005 and references 

therein). Earth systems exhibit properties that limit their predictability and constrain their 

modeling, such as chaos and self-organization (Lorenz, E. N., 1963; Murray et al., 2009; 

Poincare, H., 1893, and many others). Thus, modeling efforts aim to unravel such constraints 

to provide useful information to society (Broomhead & King, 1986; Limber et al., 2017; 

Murray, 2007). 

We propose a modeling architecture based on complex systems theory and a reduced-order 

framework (Brunton & Kutz, 2017; Sayama, 2015) to study and predict wind-wave energy 

flux variability over continental shelves. We focus on wave data with high spatial and 

temporal resolutions obtained from reanalysis studies (Chawla et al., 2011). Our framework 

deals with the system’s complexity, nonlinearity, self-organization, high-dimensionality, and 



47 

 

emergent properties by: (1) discovering the governing symbolic expressions, (2) selecting 

the ideal model for the defined system, and (3) solving it to specific conditions and 

boundaries. We apply our approach to wave data from the Northern Andes Pacific continental 

shelf. 

2.2. Background and context 

The PDE-FIND algorithm (also known as Sparse Identification of Nonlinear Dynamics – 

SINDy, (Rudy et al., 2017)) allows the discovery of nonlinear terms from time-series 

measurements of a dynamical system. This discovery is possible by applying a sparse 

regression on 𝐴𝑥 = 𝑏, with a library of possible candidate terms as 𝐴 and the temporal 

derivate as 𝑏 (Brunton & Kutz, 2017). The discovery of a partial differential equation (PDE) 

describing the system also depends on the creativity to propose candidate terms, and the use 

of effective numerical differentiation techniques (Brunton et al., 2016). Symbolic regression, 

together with recent developments on graphic neural networks and genetic programming, 

also allows obtaining a simple mathematical representation of the data. PDE-FIND works 

better when assuming that the PDE is a sum of known functional forms. In contrast, symbolic 

regression with graph neural networks and genetic programming is better suited for nested 

expressions with rare and specific functional forms such as 𝑒𝑥/2 or 𝑒−𝑑𝑥/𝑑𝑥 (Cranmer et al., 

2020). Our implementation uses the PDE-FIND algorithm to discover the mathematical 

representation of the system assuming the nonlinearities are expressed as different functional 

forms of spatial derivates of the system’s state (𝑥). 

Pioneer works proposed the Kullback–Leibler divergence (KL divergence) or relative 

entropy as a model selection approach. Comparing both simulated and actual probability 

distributions aid in evaluating how much the simulation explains the observations (Kullback 

& Leibler, 1951). This idea later evolved into the Akaike and later Bayes Information Criteria 

(BIC), including several models to find which one is more representative of the data (Akaike, 

1974). Both techniques depend on the Pareto front, although only BIC assures a convergence 

to the best-fitted model (Dziak et al., 2020). Consequently, we use the Pareto analysis to 

evaluate the model, balancing accuracy (low error) and complexity (few terms and data 

elements). In essence, to contrast the different time series measurements used to train the 

model, we evaluate the errors and deviations to select a parsimonious description and optimal 
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training data for our system of interest. This approach is possible by forecasting each PDE 

and trained model in a reduced-order framework. 

The reduced-order modeling framework, or Galerkin projections, embeds the dynamics into 

an orthonormal basis set. This framework provides the construction of a new coordinate 

space that linearizes the fundamental variability of the system (Rapún & Vega, 2010; Rowley 

et al., 2004). The problem lies in finding the orthonormal basis that best fits the actual data. 

In this vein, the Singular Value Decomposition (SVD) is the fundamental dimensionality 

reduction technique, usually described as a data-driven generalization of the factor analysis 

such as the Fast Fourier Transform algorithm (Brunton, et al 2019). This technique extracts 

fundamental correlation patterns in the data, producing an ideal basis set to embed the 

dynamics. The SVD algorithm, applied as the Principal Component Analysis (PCA) and 

Dynamic Mode Decomposition (DMD), are some of the fundamental numerical matrix 

decomposition techniques in the computational era (Brunton & Kutz, 2017). For example, 

the DMD effectively offers a tool for extracting dynamic information from a sequence of 

uniformly sampled measurements in Earth systems (J. M. Zhang et al., 2020). The resulting 

modes represent the relevant variability structures that contribute most to the overall 

evolution captured in the measurement sequence (Schmid, 2010). The DMD theoretical 

framework depends on the Koopman operator that advances the system in time, allowing a 

linearization with a more straightforward solution (Brunton et al., 2016; Rudy et al., 2017). 

We apply the PDE-FIND algorithm in the model discovery, the Pareto analysis in the model 

selection, the PCA formalism in the reduction and simulation, and the goodness of fit in the 

model evaluation, defined as the main steps to assess the spatio-temporal variability of the 

system of interest. 

2.3. Methods: Data-driven discovery of the dynamical system 

We defined the dynamical system by analyzing the temporal variability (30 years) of wave 

energy flux (𝑃) simulations at nearshore stations (13 virtual buoys) along the compressional 

continental shelf. We describe 𝑃 computation in the previous chapter. The assumptions that 

apply to our implementation are: (1) the variable 𝑃 represents the oceanographic conditions 

interacting with coastal morphodynamics, (2) we do not account for wave dissipation at 
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depths shallower than one typical wavelength of 𝑂(100 𝑚), (3) empirical parametrizations 

represent swell variability more accurately, especially on sandy coastlines, and (4) the model 

uses a heuristic formalism (source terms) to quantify wind input and nonlinear quartet 

interactions, which are still subject of scientific scrutiny. 

We computed the measurement matrix of the system 𝑋𝑃(𝑖, 𝑛) ≈ 𝑃̅(𝑥, 𝑡), assuming the 

measured subsystem (or sample) explains most of the defined system, containing a discrete 

collection of 87663 temporal realizations (𝑛) of 𝑃̅ at 13 coastal stations (𝑖). We compute 𝑋𝑃, 

for simplicity referred to as 𝑋, as the matrix containing discrete measurements of 𝑃̅. By 

definition, the reanalysis data do not represent actual measurements. Rather, they represent a 

parametrization of climate-driven oceanic phenomena. Thus, we do not have access to exact 

PDEs describing 𝑃̅ system. With these premises, we first enforce a general description of the 

dynamical system based on a nonlinear PDE, such as: 

 

 
𝜕𝑋

𝜕𝑡
= 𝑋𝑡 = 𝑁(𝑋, 𝑋𝑥, 𝑋𝑥𝑥, … , 𝑥, 𝑡, 𝛽) (10) 

 

where the subscripts represent partial differentiation in time “𝑡” and space “𝑥”. We define 

the matrix 𝑁(∙) to represent the unknown right-hand side terms dependent on 𝑋(𝑥, 𝑡), its 

derivatives, and other parameters that do not depend on 𝑋 included in 𝛽. We then pretend to 

construct 𝑁(∙) from time-series data at a fixed number of coastal locations, using the PDE-

FIND algorithm developed by Rudy et al. (2017). The central assumption of the PDE-FIND 

algorithm is that 𝑁(∙) is sparse relative to a library of possible nonlinear term candidates for 

the list of 𝑁 factors (Θ). In other words, only a selection of nonlinear terms (that 𝑁 depend 

on) contributes to the fundamental behavior of the system. Here, we choose the functional 

form of the nonlinear terms in the library to be polynomial nonlinearities and higher 

dimensional spatial domains as spatial derivates:  

 

 Θ(X) = [1 𝑋 𝑋2 𝑋3 … 𝑋𝑥, 𝑋𝑥𝑥, 𝑋𝑥
2, ] (11) 
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as we support this choice by examples in canonical models of mathematical physics and 

dynamical systems (Cranmer et al., 2020; J. M. Zhang et al., 2020; Z. Zhang & Liu, 2021).  

The optimization framework of the PDE-FIND algorithm is based on the solution to 𝐴𝑥 = 𝑏, 

where 𝐴 is the library Θ of nonlinear spatial derivates, and 𝑏 is equal to the temporal derivates 

of the system, 𝑃𝑡. The goal is to obtain a sparse 𝑥 vector that indicates which candidate terms 

best fit the data. This solution produces a linear equation representing the PDE: 

 

 𝑋𝑡 = Θ(X)α (12) 

 

with each column of Θ representing the candidate nonlinear terms, which are dependent on 

spatial derivates. To solve the linear system, we apply a conventional least-squares regression 

(𝐴\𝑏), as well as the convex relaxation of a sparse regression, referred to as the LASSO 

method (Rudy et al., 2017), which regularizes over 𝛼 as a loss function in the form: 

 

 𝛼 = arg min𝛼̂‖Θ𝛼̂ − 𝑋𝑡‖2
2 + 𝜆‖𝛼̂‖1 (13) 

 

where 𝜆 represents the L1 norm regularization coefficient, the tilde indicates the optimization 

variable and the function arg min‖ ∙ ‖ represents minimization of the loss function. The 𝛼 

quantification assures that the sparse terms in the derived PDE would appear only if their 

effect on the error ‖Θ𝛼̂ − 𝑋𝑡‖ outweigh their addition to ‖𝛼̂‖1. Allowing a sparse solution of 

the least-squares problem exhibiting good performance (Brunton & Kutz, 2017). The 

“backslash” method for solving 𝐴𝑥 = 𝑏 is based on a factorization using the spectral 

decomposition, therefore it also finds a sparse solution. 

Nevertheless, the optimization procedure is meaningless if the nonlinear terms defined as 

spatial numerical derivates are not accurate. Since wave reanalysis simulations produce 

relatively clean data, we can apply a Finite Difference numerical method (based on centered 

differences) to compute the temporal derivates of 𝑋 (Tu et al., 2014). We can also compute 

the spatial derivates (𝑋𝑥, 𝑋𝑥𝑥) as a differentiation matrix multiplication of centered 
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differences. We evaluate these ideas below. Finally, we implemented the algorithm in 

MATLAB® to solve the PDE-FIND methodology and discover the governing symbolic 

expressions of the system (Rudy et al., 2017 our Figure 11). 

To evaluate the discovered terms, we pre-processed the matrix (𝑋) into four different training 

datasets (Ordinary, Random, Uniform, and Seasonal) to input in the PDE-FIND algorithm. 

We then computed optimal basis sets (see below), for various distributions and amounts of 

data. This sequence allows a Pareto analysis framework, where the balance between model 

complexity and accuracy can be measured and optimized (Veldhuizen & Lamont, 1998).  

We look for a balance between model complexity and accuracy by comparing measured and 

simulated data. We contrast the ordinary variability (raw time series data) of 𝑃 against 

seasonal or interannual variability (Butterworth filtered data), principal spectral components 

(Fourier spectrums identified significant periodicities), and uniform and random distributions 

from the data. In that sense, we used the different training datasets to obtain nonlinear terms 

of the measurement matrix and later a reduced-order linearization to further compare the 

models using the determination coefficient (𝑅2), mean percentual error (𝑒𝑟𝑟𝑜𝑟), and the 

normalized root mean square error (𝑁𝑅𝑀𝑆𝐸), following Occam razor’s idea that the best 

model would be the simplest between equally agreeable results. 



52 

 

 

Figure 11. Data-driven discovery of PDEs, showing the model discovery and selection with the PDE-FIND 

algorithm (Brunton et al., 2016; Rudy et al., 2017). This methodology allows for a model selection that 

optimizes the mathematical description of the system’s nonlinear behavior. Figure adapted from Brunton and 

Kutz (2017). 

2.4. Methods: Dimensionality reduction 

We applied the PCA (Pearson, 1901) based on the SVD algorithm to obtain a hierarchical 

coordinate system to capture the maximum variance in the data (Yule, 1938). Based on the 

SVD, we further compute the more robust DMD technique (Tu et al., 2014). The goal is to 

reduce dimensionality into the most significant correlation structures (or dominant patterns) 
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representing a non-square data matrix, which would allow an economical (i.e., accurate and 

optimal) representation of the system. According to the SVD, we can represent our collection 

of snapshot measurements of 𝑃 in time as a data matrix (𝑋), such that can be expressed as: 

 

 𝑋 = 𝑈Ʃ𝑉𝑇, (14) 

 

where 𝑈 is a unitary matrix with orthogonal columns associated with the spatial realizations 

and correlations of 𝑃 (rows), thus called left singular vectors or spatial principal components 

(also denoted as 𝑈𝑃𝐶𝐴 when truncated into the 𝑟 most essential components). The Ʃ represents 

a matrix with real, non-negative values on the diagonal and zeros off the diagonal. These 

values represent the loadings, or “weights” (σ), which indicate how much of the original 

variance is explained by each principal component. The 𝑉 matrix represents the right singular 

vectors, or temporal principal components, as their rows are associated with the temporal 

realizations of 𝑃 (columns). Both PCA and DMD are based on the SVD, which solves a linear 

system of the form: 

 

 𝑋𝑡 = 𝐴𝑋, (15) 

 

where 𝑋 ∈ 𝑅𝑛 ∀𝑛 ≫ 1. If we apply the solution 𝑋 = 𝑣𝑒𝜆𝑡, we obtain the eigendecomposition 

or spectral decomposition. Similarly, the idea is to get a solution expressed in the basis set 

that optimizes the spatial variability of the data in a reduced-order modeling framework. The 

DMD algorithm looks for the best linear operator (𝐴) to advance the data matrix X in time 

(𝑋𝑡+1) (Schmid, 2010). We find 𝐴 by multiplying the time derivative by the pseudo-inverse 

of 𝑋 expressed as the singular value decomposition 𝐴 = 𝑋𝑡𝑋† = 𝑋𝑡𝑉Ʃ−1𝑈𝑇. We can project 

𝐴 into the spatial modes of 𝑈 and compute the spectral decomposition as 𝐴𝑊 = 𝑊𝛬. The 𝑊 

modes are then used to compute the 𝑈𝐷𝑀𝐷 such that: 

 

 𝑈𝐷𝑀𝐷 = 𝑋′𝑉Ʃ−1𝑊  (16) 
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In theory, DMD goes further from PCA, in the sense that the variability of each DMD spatial 

mode (denoted with 𝜑 as well) is not orthonormal anymore, reproducing only specific 

frequencies that oscillate in a sinusoidal manner like the Fourier transform. This 

representation works as an advantage in physical systems where the modes relate to specific 

periodic behavior with a typical growth rate. Nevertheless, PCA’s temporal modes are 

orthonormal and more parsimonious, which is advantageous in applications like Principal 

Component Space (PCS) and Reduced-Order Models (ROMs). Here, we apply the DMD 

spectrum to identify periodic behavior. We also use DMD and PCA to classify, describe and 

predict fundamental patterns in the data as a ROM. 

2.5. Methods: Reduced-order dynamical system 

In this paper, proper orthogonal decomposition or POD is the main methodology to obtain 

low-dimensional dynamical patterns to build a ROM. We evaluate and compare two POD 

architectures using the PCA and DMD basis set (𝜑𝑟1 = 𝑈𝑃𝐶𝐴 and 𝜑𝑟2 = 𝑈𝐷𝑀𝐷). We assume 

that the defined nonlinear system 𝑃𝑡~𝑋𝑡, discovered using PDE-FIND, can be solved by 

separation of scalar variables or modal expansion in space and time, so that: 

 

 𝑋(𝑥, 𝑡) = ∑ 𝑎𝑟(𝑡)𝜑𝑟(𝑥)𝑛
𝑟=1 , (17) 

 

where 𝑎(𝑡) represents the time dependence of the nonlinear behavior, 𝜑𝑟 represents the 

spatial dependence assumed to be embedded in the matrix decomposition, and 𝑟 represents 

the truncated modes (from 1 to 𝑅). To ensure that an analytical separation of variables can 

occur, we assume Eq. 5 with constant coefficients. This expansion produces a low-rank set 

of ODEs that approximates the true solution of the high-dimensional PDEs. If we plug Eq. 

17 into Eq. 10, represented by scalar values, we obtain: 

 

 𝑎𝑟(𝑡)𝑡𝜑𝑟(𝑥) = 𝑁[𝑎𝑟𝜑𝑟, 𝑎𝑟(𝜑𝑟)𝑥, 𝑎𝑟(𝜑𝑟)𝑥𝑥, … , 𝑥, 𝑡, 𝛽] (18) 
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Now, the form of 𝑁[∙] determines the nonlinear mode-mixing that occurs between the 𝑟 

modes. By obtaining the most effective basis set (𝜑𝑟) and selecting the most important 

principal components (𝑟), we could model the nonlinear effects of the system. 

To compute the ROM of the variable 𝑎(𝑡), we find the PDE form of the nonlinear terms and 

calculate the optimal basis set, which multiplied by 𝜑𝑟
′  (given that 𝜑𝑟

′ 𝜑𝑟 = 𝐼 by 

orthonormality in Galerkin projections) would yield (Rowley et al., 2004): 

 

 𝑎𝑟(𝑡)𝑡 = 𝜑𝑟
′ 𝑁(𝑎𝑟 , 𝜑𝑟, (𝜑𝑟)𝑥, (𝜑𝑟)𝑥𝑥, … , 𝑥, 𝑡, 𝛽) (19) 

 

From this mathematical framework, we present the discovery of nonlinear PDEs with 

constant coefficients, the analytical development of a reduced-order description, and the 

computational algorithms that allow to simulate and solve the spatio-temporal dynamics of 

the system. 

2.6. Results and discussion: Exploratory analysis 

Figure 12-A shows the statistical trends of 𝑃 along the coast by contrasting the mean values 

of 𝑃 as well as the variability coefficient (COV) at each nearshore station. This latitudinal 

representation relates to the average picture of the system of interest. The latitudinal trend 

suggests an S-N, alongshore rise in wave energy, supporting the idea that continental shelf 

morphology, controlled mainly by the compressional geologic setting (Correa & Morton, 

2010), exerts control on 𝑃 variability, mostly by bottom dissipation (Ardhuin et al., 2009). 

We observe that a wide continental shelf (Northern stations) presents higher energy values 

with low temporal variability than a narrow shelf (Southern stations). Lower latitudes 

(Southern stations) might be more susceptible to wave dissipation mechanisms, increasing 

the nonlinear interactions of different wave environments and producing more stochastic 

behavior. Furthermore, we cannot identify the temporal evolution by observing the statistical 

behavior in Figure 12-A as the mean state of the system in 30 years. 
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Figure 12-B shows the classical characterization of wave environments as a function of 

statistical wave parameters as dimensions in coordinate space. This representation permits a 

clear and intuitive classification of swell and local waves. We define local waves as 

exhibiting peak periods <10 seconds, whereas swell periods range from 10 to 20 seconds. 

We observe that most wave energy comes from swell environments arriving between 230° 

and 340° azimuth, with wave heights indicating moderate-to-high energy nearshore 

environments (Restrepo & Kjerfve, 2002). 

 

Figure 12. Experimental results illustrating statistical trends in the spatial variability of 𝑃 along the continental 

shelf (A), characterization of wave climate into swell and local environments by wave parameters (B), raw 

spatio-temporal evolution (C), and seasonal variability of the system (D). Statistical trends and dominant 

patterns provide practical information and intuition about the system, which is essential to generate the possible 

symbolic terms that describe the data. 

2.7. Results and discussion: Model discovery and selection 

Since the interest of the reduced framework is to solve a system in the form of 𝐴𝑥 = 𝑏, we 

define our system as an overdetermined, as we have few unknowns (13 alongshore stations) 
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and many constraints (87,663 snapshots). This definition is necessary for obtaining a detailed 

spatial variability with a low temporal resolution, dictating the type of regression we should 

apply. 

Figure 13 presents the PDE discovery process from different training datasets, the obtained 

regression, and the model selection to evaluate errors and get the simplest model. We use 

these datasets to assess how other distributions in the data impact model errors in predicted 

results. Using random and uniform distributions extracted from the data, we evaluate how 

statistically robust each proposed model is, as the seasonal and ordinary models explain the 

behavior of interest in the system. 

To solve 𝐴𝑥 = 𝑏 in each of the training datasets, we applied two methods: “backslash” (𝐴\𝑏) 

and LASSO. Overall, we observe that ordinary and seasonal variability render the same 

mathematical representation as random and uniform distributions. The PSC is the only time 

series with different solutions in both regression methods. Interestingly, the “backslash” 

solution applied to PSC resulted in the same terms as almost all the LASSO solutions for all 

different training datasets. This result suggests that the Fourier basis representation could 

encode information like the one identified by the LASSO approach. 

To select the ideal terms from the PDE and evaluate the complexity/accuracy balance, we 

reduced each individual term into the optimal basis to linearize each symbolic representation 

(ROM of each term), as well as adding all the terms to obtain a 6-term PDE and later 6-term 

ODE (ROM of the complete PDE). We linearized the system embedding the terms in a low-

rank structure that reproduces the most important dynamic evolution. By simulating each 

term and the complete PDE, allowed us to find the Pareto front, defined as the inflexion point 

of the curve where the error starts increasing and the number of terms is decreasing (Figure 

11-D, as well as Figure 13-C). We find that the error using only the first term (𝑃𝑥) is 

𝑁𝑅𝑀𝑆𝐸 = 36.63% and the error using four terms (𝑃𝑥 + 𝑃2
𝑥 + 𝑃𝑃𝑥 + 𝑃𝑥𝑥

2 + cos (𝑃𝑥𝑥)) is 

𝑁𝑅𝑀𝑆𝐸 = 37.16%. Thus, we must select the PDE with one term and conclude that the error 

obtained from the model is almost entirely dependent on the basis set that embeds the 

dynamics of the system, the ROM. Therefore, the error analysis performed in the next 

sections is based on evaluating different training datasets (seasonal, ordinary, random, and 

uniform) on reduced-order algorithms (PCA and DMD). 
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After running the model with each dataset and symbolic term, as well as the model containing 

all terms added together, the Pareto analysis showed that the error of using only one reduced-

order term (𝑎𝑥 = 𝜑𝑟
′ 𝜑𝑥𝑎) was 21% (𝑁𝑅𝑀𝑆𝐸 = 38) while the error using all the five 

discovered terms (𝑎𝑥 = 𝜑𝑟
′ 𝜑𝑥𝑎 + 𝜑𝑟

′ 𝜑2
𝑥𝑎2 + 𝜑𝑥𝑎2 + 𝜑𝑟

′ 𝜑𝑥𝑥
2𝑎2 + 𝜑𝑟

′ cos (𝜑𝑥𝑎)) was 18% 

(𝑁𝑅𝑀𝑆𝐸 = 36.6%). This indicates that the ROM’s robustness lies in the computation of the 

optimal basis set to embed the data and the number of truncated modes to expand the data, 

rather than the symbolic expression used to describe it. The ROMs developed on our system 

do not seem to depend much on the nonlinear terms, but rather on the basis functions that 

linearize the system. Consequently, we conclude that the Pareto analysis cannot perform 

correctly assuming the model’s complexity as a function of the number of nonlinear terms, 

which is not as efficient as assuming the model’s complexity or computational expense as a 

function of the number of elements in the training data. We observe that the errors depend 

upon the information represented on the time series signals rather than the amount of data, 

and we also show that the moving average filtering technique applied does not affect the 

error, but the opposite is found for ordinary training datasets where the filtered data improved 

the error.  
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Figure 13. Methodological diagram proposed in the present study. We applied it to different training datasets 

(step 1) to discover the possible nonlinear terms (step 2), select the appropriate reduced model (step 3), and 

evaluate the simulated results versus actual data (step 4). This result illustrates the developed algorithm and 

conceptual method to adequately obtain a parsimonious PDE description of the fundamental spatio-temporal 

variability of 𝑃 along the continental shelf of a compressive tectonic margin. 

2.8. Results and discussion: Model reduction and solution 

After discovering the ideal nonlinear term that best represents the data, we find the low-rank 

structure that allows linearizing the system. Thus, we compute the SVD algorithm applied to 

normalize training data to generate the PCA modes along the basin and the coastline (Figure 

14-A). Further, we use the Koopman operator to produce the DMD modes (Figure 14-B). 

We contrast different basis sets with three and five-mode expansions to solve the reduced-
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order dynamical system and find that the error using a three-mode expansion, which results 

in equally significant values as the five-mode expansion. We observe the modes in the basin 

to identify the wind-wave arriving trends on each mode. Therefore, the spatial modes 

computed represent the alongshelf variability of 𝑃 (Figure 14-C and D). From the SVD 

decomposition, the cumulative percent of variance and the singular values show that the first 

three modes represent almost 95% of the total variability for the seasonal time series (Figure 

14-F). The ordinary training data set shows that the first three modes explain 70% of the total 

variability. This contrast highlights that we can model the hierarchical processes that drive 

most of the energy in the system using a three-mode expansion of the ROM. 

We used the matrix 𝑉𝑇 from the SVD to compute an optimal coordinate system that 

represents the temporal variability of each station (𝑥 = 𝑉𝑇
𝑟=1 ∙ 𝑋𝑖𝑟=1, 𝑦 = 𝑉𝑇

𝑟=2 ∙ 𝑋𝑖𝑟=2,

𝑥 = 𝑉𝑇
𝑟=3 ∙ 𝑋𝑖𝑟=3 ). By multiplying each truncated temporal mode (𝑉𝑇) by each station’s 

time series (𝑋𝑖), we obtain a unique coordinate point representing wave energy flux 

variability in terms of the first three temporal modes in the optimal coordinate system. This 

representation corresponds to the Principal Component Space, where we statistically model 

and classify each station's unique “fingerprint” as a function of nearshore morphodynamic 

regimes. The three colors in Figure 14-E correspond to the morphodynamic regimes we 

identified (i.e., Northern: cyan, Middle: red, Southern: blue). 
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Figure 14. Optimal basis set computation from data in the form of two algorithms: principal component analysis 

or PCA (Panel A), and dynamic mode decomposition or DMD (Panel B). Each algorithm produces a basis set 

of hierarchical spatial variability patterns used to embed the dynamics and linearize the system. Panel C shows 

the spatial modes of the PCA, and Panel D shows the DMD spatial modes. Panel E represents the coordinate 

representation known as the principal component space (PCS), where each station presents a unique coordinate 

as a function of the principal components (PCs). Panel F illustrates important information for both techniques, 

since it shows the hierarchical information in the singular value decomposition used for both approaches. 

We found the selected ideal model of the dynamical system of interest to be: 

 

 𝑃𝑡 ≈ 𝑋𝑡 = 𝛼𝑋𝑥 + 𝛽 (20) 

 

where 𝛼 is the coefficient for the nonlinear term, and 𝛽 represents the parameter spa ce. 

By assuming the separation of variables 𝑋(𝑥, 𝑡) = 𝜑𝑟(𝑥)𝑎𝑟(𝑡) given independence between 
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time and space, we linearize the system as a three-mode expansion, which now depends on 

the coefficients 𝑎(𝑡) of the basis functions 𝜑𝑟(𝑥), such as: 

 

 𝜑(𝑥)𝑎(𝑡)𝑡 ≈ 𝛼 (𝜑1𝑥
(𝑥)𝑎1(𝑡) + 𝜑2𝑥

(𝑥)𝑎2(𝑡) + 𝜑3𝑥
(𝑥)𝑎3(𝑡)) +  𝛽 (21) 

 

Since the time dynamics 𝑎(𝑡) are assumed to change linearly, we define 𝑎1(𝑡) + 𝑎2(𝑡) +

𝑎3(𝑡) = 𝑎(𝑡). Additionally, due to the orthogonality properties of the SVD algorithm, we 

assume 𝜑𝑟
′𝜑𝑟 = І by the Galerkin projection, so we can multiply Eq. 21 by 𝜑𝑟

′ to obtain 

 

 𝑎(𝑡)𝑡 = 𝛼 (𝜑1
′(𝑥)𝜑1𝑥

(𝑥) + 𝜑2
′(𝑥)𝜑2𝑥

(𝑥) + 𝜑3
′(𝑥)𝜑3𝑥

(𝑥)) 𝑎(𝑡) + 𝛽 (22) 

 

Eq. 22 represents the ODE of the reduced-order dynamics of the wave energy flux 𝑃. We 

numerically solve Eq. 22 using the ODE45 algorithm in MATLAB®, which outputs the 

dynamical solution 𝑎𝑠𝑖𝑚(𝑡)𝑡. We finally reconstruct the system as 

 

 𝑋𝑠𝑖𝑚 = 𝜑𝑟(𝑥)𝑎𝑠𝑖𝑚(𝑡) (23) 

 

2.9. Results and discussion: Model evaluation 

We evaluate the model by contrasting several training datasets regarding the error and the 

number of measurements to find the balance between model accuracy and complexity, like 

the Pareto front. The number of terms reflects on the computational expense of the model 

and the robustness of the dimensionality reduction techniques. These considerations usually 

relate to the number of terms in the PDE. Both measures dictate the model’s computational 

complexity. Since we found that one term is equally significant to six terms, we apply the 

number of measuring samples to quantify model complexity.  
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We compute the error and the determination coefficient of each dataset to evaluate against 

different amounts and components of time series training data. Figure 15 presents the best-

fitted model of both ROMs, i.e., PCA (Panels A-B) and DMD (Panels D-E). We include the 

Pareto analysis in Figure 14C as the balance between the determination coefficient and the 

number of training samples. We observe that the random training dataset computed with 

training samples from 100 to 100,000 elements shows 𝑅2 values from 0.6 to 0.9, indicating 

a relatively strong linear relation between simulated and observed data. We additionally 

present the results of the model evaluation applied to all training datasets. We include their 

respective root mean square error (RMSE) analysis, linear regression, and mean error (Figure 

16). 

The Pareto analysis shows that the ordinary training datasets from 100 to 1,000 elements 

present a relatively significant decrease in R2 values as the model complexity increases. This 

result suggests the opposite behavior expected from the Pareto analysis using the number of 

terms, which would over-adjust the model as the complexity increases. We observe that the 

seasonal training data maintains virtually the same R2 values as model complexity increases. 

Overall, we find that the Butterworth filter applied to reduce the number of elements in the 

training data (model complexity reduction) improves modeled results. Thus, the results show 

good agreement between extrapolated and observed data in the cases of seasonal and ordinary 

variability. Nevertheless, the random training datasets evaluation shows relatively good 

performance of the ROM for any number of training elements. 

We solved the dynamical system using the discovered equation, but since the first term in 

Burger’s wave equation is equal to our found functional form (𝛼𝑋𝑥), we added the diffusion 

term of the wave equation (𝛽𝑋𝑥𝑥). Similar to previous results, the error does not change. We 

still obtain a 15.5% error and NRMSE of 38%, Thus, the system’s linearization by the 

optimal basis functions no longer requires specific coefficients and complex nonlinear 

functional forms. In other words, we can produce a robust ROM by averaging time series and 

using first-order spatial derivates to compute a linearization that captures the fundamental 

spatial variability of P along continental shelves. 
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Figure 15. Model evaluation of the best fitted PCA (Panel D and E) and DMD (Panel A and B) ROMs, together 

with the graphical representation of the Pareto analysis (accuracy vs complexity plot) applied to the different 

training datasets (Panel C). 

In Figures 15 and 16, the seasonal ROM shows over-estimations on the Northern stations 

and under-estimations on Southern stations, with an overall good performance (15.5% of 

error). The ordinary ROM also presents the same behavior, reducing the performance 

(23.7%. error). In contrast, the uniform distributed data shows overall good performance 

(18.5% error), with similar behavior to seasonal and ordinary ROMs in over and under-

estimated values along the coast. More importantly, the random trained ROM presents the 
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more significant result, with a 10.5% error and relatively little (and almost constant) over-

estimations at the nearshore stations. 

 

Figure 16. Model evaluation for different training datasets. From top to bottom: seasonal, uniform, ordinary, 

and random. The left column shows the RMSE analysis, the center column the linear model between simulated 

and real values with the mean standard and percentual error values, and the right column shows the simulation 

and real evolution of the spatio-temporal system. 
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By forecasting 100 years using the seasonal, ordinary, and uniform ROMs, we found specific 

trends for each station, and more importantly, morphodynamical regime. We observe that the 

Northern regime appears to decrease in energy flux as time progresses, while the Middle 

regime increases drastically with time and latitude. The Southern regime also presents a clear 

and accelerated decrease in wave energy flux in time. These trends provide an important 

future state assessment of coastal morphodynamics driven by mesoscale wave climate in the 

Northern Andes Pacific coastline. 

Overall, we accurately find the analytical expression that best represents the defined system’s 

evolution data, and then we reduce it into its fundamental modes, obtaining a proxy linear 

model for future predictions. The model was compared to itself due to the lack of real 

measurements along the area, which is a recurrent problem in underdeveloped countries. The 

model was evaluated using different training data varying in size and distribution, so we 

could obtain a parsimonious relation between accuracy and complexity. We obtained the best 

results using filtered time series of seasonal variability with a temporal reduction in data 

elements of 95% and a spatial reduction of 75%. As well as reducing a 13 𝑥 87663 size PDE 

to a 3 𝑥 360 size ODE, and still simulating a 13 𝑥 𝑓𝑢𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 system. 

Despite the efforts to find the ideal symbolic representation of the system, the linearization 

resulting from the reduced-order framework is the most important step in accurately 

modeling the system’s behavior. Nevertheless, symbolic regression, which can also find the 

analytical expression of the data without assuming the creativity to generate the possibilities, 

is a remarkable technique that combined with graph neural networks, encouraging sparse 

latent representations to distill symbolic representations, could be another important method 

worth exploring in future work. 

3. Conclusions and future work 

The proposed framework and modeling architecture identifies trends and dominant dynamic 

processes driving P variability, which, as shown before, can effectively be associated with 

morphodynamical conditions and sub-aerial profiles along the continental shelf. New 

measured time series of wave climate from coastal environments can be interpolated in the 

PCS to classify and statistically model recent wave-induced coastal morphodynamics. Since 
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we could not have access to new measurements, we test our model with the latest available 

reanalysis data to corroborate the significance of the model. This conclusion pretends to 

illustrate that, even though we live in an era of overwhelming amounts of data, both data 

scientists and data-mining tools are still more available than scientific measurements in most 

developing countries of the South American continent. 

Nevertheless, we apply the proposed data-driven analytics of wave climate to elucidate 

coastal morphodynamics along the continental shelf of the compressive tectonic margin in 

the Northern Andes Pacific basin. We obtain and propose three distinct morphodynamical 

regimes associated with unstable feedback processes in shoreline shape formation in a low-

rank, optimal coordinate system. Which provides relevant information on wave-induced 

long-term coastal evolution and helps further understanding the complex system of wave-

induced sediment transport in local bathymetry. 

On the other hand, the discovered ROM was trained using data from 1980 to 2000, to further 

predict from 2000 to 2010, as well as 2100. We find significant agreement between 

extrapolated values and high-fidelity global simulations (R2=0.86 and NRMSE=15.14%), 

for both training datasets of identified periodic behavior and random distributions for the 

2010 predictions. More importantly, we found decadal or mesoscale behavior by predicting 

coastal values of P into 2100 associated with wave-induced coastal morphodynamics. Our 

results provide a modeling architecture of wave climate, illuminating the importance of 

hidden leading-order variables in complex systems such as wave-induced sediment transport 

along continental shelves. The found mesoscale trends of each proposed morphodynamical 

regime represent an important assessment of wave-induced coastal evolution. Additionally, 

we aim to work further on the bifurcation analysis of the parameter beta, this would allow 

the characterization and modeling of different scenarios of the system based on empirical 

adjustments.  

We define a complex system from high-fidelity simulated wave climate data. Meaning, we 

assume that the selected variable (wave energy flux) represents the system of interest to 

model wave-induced morphodynamics along continental shelves. We also assume that the 

measured system is the solution of a set of PDEs in space and time and that it can be solved 

as a linear problem by the separation of variables, such that the dynamic patterns of interest 
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are embedded in each variable. We numerically solve the model for different training datasets 

and dimensionality reduction algorithms to evaluate the parsimony of the model and obtain 

a low-rank predictive model. We conclude that our approach is efficient and produces a 

parsimonious model of reality. 

4. Supplementary methods (appendix) 

We present the project data architecture proposed to assess wave energy by a variety of data-

driven techniques (Figure 16). The pre-processing stage defines the system and computes the 

wave energy flux (P) from WW3 wave parameters. The processing of time series of P into 

seasonal, multi-year, spectral components and anomaly variability allows evaluating 

different training datasets for the ROM to produce a parsimonious model. The data-driven 

descriptive analytics were classification and identification of swell and local waves, using 

linear regression and ANOVA, supervised and unsupervised learning algorithms, as well as 

wavelet and Fourier analysis. The data-driven predictive analytics consists of the PDE-FIND 

algorithm applied to both the Principal Component Space and training datasets to discover 

the parsimonious expression for the system, while the ROM is applied to reduce 

dimensionality and computational expense in solving future states of the system of P. 
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Figure 17. Project data analysis architecture and modeling framework proposed to assess wave climate data, 

with a focus on shoreface morphodynamics and coastal evolution. The architecture stages are pre-processing, 

processing, data-driven descriptive analytics, and data-driven predictive analytics. The pre-processing stage 

defines the system and computes the wave energy flux (𝑃) from WW3 wave parameters. Processing 𝑃 time 

series data into seasonal and multi-year variability, the principal spectral components, and the anomalies in the 

data allowed the evaluation of different training data for the ROM. The data-driven descriptive analytics were 

applied by classification and identification of swell and local waves, using linear regression and ANOVA, 

supervised and unsupervised learning algorithms, as well as wavelet and Fourier analysis. The data-driven 

predictive analytics consists of the PDE-FIND algorithm applied to both the PCS and time-series datasets to 

discover the parsimonious expression for the system, while the ROM is applied to reduce dimensionality and 

computational expense in solving future states of the system of 𝑃. 
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