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A B S T R A C T   

An exposure model is a key component for assessing potential human and economic losses from natural disasters. 
An exposure model consists of a spatially disaggregated description of the infrastructure and population of a 
region under study. Depending on the size of the settlement area, developing such models can be a costly and 
time-consuming task. In this paper we use a manually annotated dataset consisting of approximately 10,000 
photos acquired at street level in the urban area of Medellín to explore the potential for using a convolutional 
neural network (CNN) to automatically detect building materials and types of lateral-load resisting systems, 
which are attributes that define a building’s structural typology (which is a key issue in exposure models for 
seismic risk assessment). The results of the developed model achieved a precision of 93% and a recall of 95% 
when identifying nonductile buildings, which are the buildings most likely to be damaged in an earthquake. 
Identifying fine-grained material typology is more difficult, because many visual clues are physically hidden, but 
our model matches expert level performances, achieving a recall of 85% and accuracy scores ranging from 60% 
to 82% on the three most common building typologies, which account for 91% of the total building population in 
Medellín. Overall, this study shows that a CNN can make a substantial contribution to developing cost-effective 
exposure models.   

1. Introduction 

Disaster risk management is a worldwide concern, and earthquakes 
have been a main cause of casualties and economic losses from natural 
disasters over the past several decades [1]. The numbers of people 
affected, as well as the economic losses for a given earthquake, depend 
on three factors [2,3]: the frequency and size of the earthquakes in the 
study region (seismic hazard), the inventory of people and infrastructure 
(exposure), and the ability of buildings to sustain earthquake loading 
(vulnerability). As described in the Sendai Framework for Disaster Risk 
Reduction [4] the exposure of people and infrastructure has increased 
worldwide faster than their vulnerabilities have decreased. This trend 
has generated new risks and caused a steady rise in disaster losses. 

This paper focuses on the exposure model, which is a description of 
all the assets in the region under study. The development of an exposure 
model is challenging, especially in places such as emerging countries 

where information is not routinely collected by government agencies. 
When small settlements are considered, information on building char
acteristics may be obtained from in-situ surveys that carry only mod
erate costs for human and economic resources. However, as the size of 
the modeled settlements increases, the cost and time required to conduct 
these surveys also increases [5–8]. 

Currently, some of the valuable information used to develop expo
sure models can be obtained from data already available online, such as 
images from Google Street View (GSV). This article explores applying 
convolutional neural networks (CNN) to such imagery to automatically 
determine building materials and the types of lateral load-resisting 
systems. These attributes define building structural typology, which is 
a key issue in exposure and vulnerability models for seismic risk 
assessment. For this purpose, we compiled and manually annotated a 
dataset containing approximately 10,000 GSV images of buildings 
within the urban area of Medellín, which is the second-largest city in 
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Colombia, with a population of 2.5 million inhabitants. We used the 
compiled dataset to fine-tune state-of-the-art publicly available pre- 
trained CNNs to predict the building material and the lateral load- 
resisting system type and achieved promising levels of accuracy when 
predicting the material and ductility of the lateral load-resisting systems. 
The fine-grained typology prediction performance was not as accurate; 
nonetheless, the overall results can be effectively used by modelers as 
complementary additional data that can significantly decrease the re
sources needed for developing exposure models. Although CNN and 
deep learning methods have been previously used for building classifi
cation (see Section 2.4), individual building classification based on its 
structural typology as approached in this work has not, to the knowledge 
of the authors, been previously addressed. 

In the context of Latin American cities, which are some of the most 
urbanized regions in the world, using a tool like the one presented in this 
paper, will give local governments the possibility to conduct seismic risk 
assessments in less time and at a lower cost, thereby facilitating to some 
extent the achievement of the sustainable development goal (SDG) 11, 
“Make cities and human settlements inclusive, safe, resilient and sus
tainable.” Latin American cities must face the challenge of revisiting 
their built environments and increasing their quality to improve the 
safety of their cities. In this context, exposure models are a key 
component of seismic risk assessments, which are essential for under
standing disaster risks, one of the four action priorities of the Sendai 
Framework for Disaster Risk Reduction. 

The remainder of this paper is organized as follows. Section 2 de
scribes previous works conducted in this area. Section 3 describes the 
data collection process and the dataset construction. Section 4 describes 
the experiments. The results and subsequent discussion are presented in 
Section 5. Finally, Section 6 presents the main conclusions of this study. 

2. Related works 

2.1. Exposure models 

Knowledge of building typology in a given region is a key input in 
developing an exposure model for seismic risk assessment [9]. The 
exposure model contains a detailed description of the assets in a region, 
including properties, infrastructure, population, and economic activities 
[10]. An exposure model, along with seismic hazard and vulnerability 
models, is used to estimate the probability of losses if an earthquake 
should occur [2,3]; in other words, exposure models are used to assess 
seismic risk. A seismic risk assessment for the building stock in a region 
requires classifying its buildings based on their structural typology, a 
parameter that defines the building behavior under seismic load. 
Building typology is a function of the building’s ability to resist lateral 
loads and involves the building materials, building height, date of 
construction and the shape of the building plan, among other factors 
[11–13]. In this paper, we follow the building taxonomy for earthquake 
assessment developed by the Global Earthquake Model (GEM) Founda
tion [14]. This work considers only residential buildings whose struc
tural typology is based on three of the attributes included in the GEM 
taxonomy: the material of the lateral load-resisting system, the lateral 
load-resisting system type, and the building height. The lateral 
load-resisting system refers to the horizontal and vertical elements that 
transfer lateral seismic forces to the building’s foundations; it can be a 
system of walls only, beams/columns, or beams/columns/walls. The 
lateral load-resisting system can also be constructed of different mate
rials, including reinforced concrete, masonry, steel, earth, stone, etc. We 
also included building ductility in the typology definition. Ductility re
fers to the building’s capacity to sustain deformation before collapse. 
This parameter can be inferred from the lateral load-resisting system and 
the date of building construction, because the latter parameter is closely 
related to seismic building code enforcement. 

2.2. Building typologies in Medellín 

The building stock used in lateral load-resisting systems varies 
among locations due to differences in construction practices, material 
availability, building age, weather, etc. In the city of Medellín, the high 
levels of socio-economic inequality are reflected in high urban hetero
geneity. According to Ref. [15], “Medellín has a portfolio of buildings 
mainly comprised of low- and intermediate-rise masonry structures and 
reinforced concrete structures, both medium- and high-rise, in devel
oping residential areas.” Reference [16] identified nine building typol
ogies for Medellín using the GEM taxonomy. The building typology 
“others” was included to consider buildings built with unconventional 
materials; however, this type constitutes an insignificant percentage of 
Medellín’s building stock and is thus excluded from the analysis in the 
present work. 

The lateral load-resisting systems for the eight considered typologies 
for Medellín are wall (LWAL) systems, infilled frame (LFINF) systems, or 
dual frame-wall systems (LDUAL). A system can be made of masonry or 
reinforced concrete (CR); in masonry buildings the lateral load-resisting 
system is composed of masonry walls (vertical planar elements), which 
can be unreinforced (MUR: masonry without any form of reinforce
ment), confined (MCF: construction in which masonry walls are first laid 
and then the horizontally and vertically reinforced confining elements 
are cast), or reinforced (MR: masonry wall construction in which rein
forcement is embedded in such a manner that both materials act 
together to resist forces). The lateral load-resisting system of CR build
ings can be frames, walls or a combination of both. A moment-resisting 
frame is a beams and columns structure with strong and rigid beam-to- 
column connections. In some cases bays of frames are infilled with 
masonry walls, in which case the system is termed an infilled frame. In a 
wall system, the walls resist both gravity and horizontal forces; CR walls 
are monolithic, which is not the case with masonry walls. In a dual CR 
frame-wall system, both the frame and CR walls resist lateral loads. The 
third attribute for building classification, ductility, refers to the build
ing’s capacity to sustain deformation without failure. Building typol
ogies are classified as either ductile (DUC) or nonductile (DNO). Fig. 1 
shows examples of each building typology. 

2.3. Determining structural building typologies 

The lateral load-resisting system and its material can be identified 
only from the blueprints or by direct expert observations. In most cases, 
access to structural blueprints is limited, and for structures arising from 
self-construction processes, this information does not exist. Conse
quently, expert surveys seem to be the best option for compiling building 
inventories. However, in large cities it is not possible to survey each 
asset; therefore, several assumptions need to be made to establish an 
exposure model. Some authors have gathered building attributes from 
census data [9], while others acquire statistics from samples of surveyed 
structures and use them to allocate the load-resisting system of non
surveyed buildings [15,17,18]. Expert opinions are necessary to gather 
details not included in the sources of information such as national 
housing databases, census data, etc. Since the early 2000s, the devel
opment of remote sensing technologies and their high degree of pene
tration in urban environments worldwide have created opportunities for 
gathering data used in air exposure models [5,19–21]. This technology 
allows for the measurement of variables such as plan-built areas, 
building height, type of roof, building classification (in terms of in-plan 
area, number of stories, detached/attached dwelling, etc.), and building 
age (by comparing images taken at different years). More recently, some 
authors have started to use GSV, replacing fieldwork with virtual tours 
to visualize façades and gather lateral load resisting systems and mate
rials remotely [16,22]. Reference [8] used GSV images to automatically 
retrieve and map the number of stories of urban buildings. Either by 
expert observation or by automatic means, the identification of a 
building typology solely based on its façade can be a challenging task. 
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Therefore, uncertainty in building classification is always present. The 
possibility of using automated methods to increase the sample size at 
low cost helps to reduce such uncertainty. 

In this paper, we aim to take advantage of recent developments in 
artificial intelligence, particularly deep learning, to develop a system 
capable of learning structural building typology from experts and 
automatically classifying large numbers of façades captured from GSV. 
From the best of our knowledge, this is the first work that uses CNN for 
the automatic identification of the structural building typology. 

2.4. Deep learning 

In recent years deep learning methods have achieved wide success on 
diverse of perceptual tasks [23]. These models avoid the need to 
manually design specific image feature detectors by looking for a set of 
transformations directly from the data, and have achieved remarkable 
results, particularly for computer vision problems such as natural scene 
classification and object detection [24]. 

The CNN [25] is a specialized artificial neural network architecture 
intended for signal processing in general and two-dimensional images in 
particular. In a CNN, images pass through successive layers arranged in a 
hierarchical pattern recognition system that simultaneously learns the 
features that are best suited to classify an image, recognize objects, etc. 

A typical CNN architecture (Fig. 2) consists of a succession of con
volutional layers accompanied by other supporting layers (such as 
pooling, dropout, etc.). The convolutional layers learn a set of filters or 
kernels that are activated when a specific feature pattern is present 
somewhere in the input image. Their convolutional and hierarchical 

nature provides certain scale and location invariance capabilities. 
Pooling layers progressively reduce the spatial size of the representation, 
diminishing the number of parameters and computation in the network. 
Finally, the CNN is completed with fully-connected (FC) layers that act 
as a regular multilayer perceptron to provide the networkâ€™s output 
(class probabilities, etc.). 

CNNs learn hierarchies of visual features (Fig. 3)—that is, composi
tional patterns of visual structures through which the current dataset 
can be better understood. For instance, the first level set of visual 
primitives of a building dataset is probably composed of various color 
gradients and mostly vertical and horizontal border-like structures. 
Then, richer visual structures are composed by using the previous 
structures as building blocks. Each level corresponds to a CNN layer. The 
corresponding filters are not prebuilt by the experimenter, they are 
learned from the data. 

Other than simulation-based approaches (see Ref. [6,26]) and clas
sical statistical or modelling methods [27–29], there has been little use 
of machine learning methods for seismic risk assessment. Certain ma
chine learning approaches have been based on applying standard algo
rithms to data acquired from sensors or databases (public registries, etc.) 
such as the works in Ref. [30,31] or [32]. However, various image 
processing approaches have been proposed in related areas, including 
earthquake damage estimation [33,34], estimation of seismic building 
structural types [35], building detection [36], crack damage detection 
[37], exposure estimation [38,39], landslide risk assessment [40], etc. 
Nevertheless, the vast majority of these approaches are based on satellite 
imagery. 

Fig. 1. Building typologies for the residential building stock of Medellín (names according to the GEM taxonomy). Images were sourced from photos taken by the 
authors in the city of Medellín in Jan 2018. 

Fig. 2. Example of a CNN architecture.  Fig. 3. Example of hierarchical features.  
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CNN’s are starting to be used (although timidly) in this field. For 
instance, in Ref. [41], a CNN was used to process ground velocity re
cords to detect earthquakes. However, CNN’s have been used to extract 
information and classify GSV images, including street number recogni
tion [42], traffic sign recognition [43], number of building stories [8], 
building view factors estimation [44], estimation of street-level solar 
irradiance [45], estimation of sky, tree and building view factors [46], 
classification and mapping of urban canyon geometry [47], classifica
tion of building instances [48], description of the form and composition 
of cities from a human-centric perspective [49], and estimation of 
neighborhood demographic composition [50]. 

3. Data 

3.1. Study area 

Between the early 1950s and early 1970s, Medellínâ’s population 
grew from 358,189 to 1,077,252 inhabitants, mainly due to forced 
displacement from rural areas to informal urban settlements on the 
valley slopes. After the urban war against the drug cartels, from the mid- 
1980s to the early 1990s, Medellín’s annual population growth reached 
2.6%. Today, Medellín is the second most populous city in Colombia 
with an estimated population of 2.5 million living in an area of 1152 
km2, divided into 271 neighborhoods grouped in 16 urban districts 
(comunas). 

Medellín (Fig. 4) is located in an intermountain valley at 1460 m 
above mean sea level, in a medium seismic hazard zone [51]. The pos
sibility of earthquakes and the city’s size has made seismic risk a concern 
in recent decades ([9,15,17,18,52]). The construction quality of 
Medellín’s building portfolio is closely related to the inhabitants’ eco
nomic levels and building age: the best construction practices are found 
in medium-high and high-income zones. Seismic design has been 
mandatory only since 1984 in Colombia; therefore, few buildings built 
before that date can withstand seismic loads. The bulk of Medellín 
building stock consists of informal construction in low-income zones 
that do not meet code requirements [17] and thus can be expected to 
exhibit poor performance under seismic loads. 

3.2. The dataset 

This paper relies on a dataset for Medellín compiled by Ref. [16], 
who used GSV to sample over ten thousand buildings distributed 
throughout the entire city. An image of the façade of each building was 
collected using GSV; then, the images were stored (along with building 
information) using the Inventory Data Capture Tool, IDCT [53]. There 
are three aspects to keep in mind when using GSV: (1) in residential 
areas, images are usually updated every two to three years, (2) GSV 
captures the images from the perspective of the street and about 3 m 
apart, and (3) currently, not all cities have imagery available for all 
streets. Therefore, in those cases in which there are areas of the city not 
covered by GSV imagery or when the available images do not reflect 
recent changes, it is possible to gather the information by own means 
and process it with our method. 

A set of attributes were measured and linked to each image, 
including the type and material of the lateral load-resisting system, 
number of stories and ductility level. This virtual survey required 342 
working hours over a four-month period by a master student and two 
final-year civil engineering students. To guarantee good performance 
when assigning the lateral load-resisting type, the students were trained 
by a guide published by the Federal Emergency Management Agency, 
FEMA [54], to perform rapid visual screening of buildings for potential 
seismic hazards. The surveyed buildings were selected such that 
different socio-economic levels, construction practices and building 
heights were included. 

A total of 9989 buildings from those surveyed by Ref. [16] were 
considered for the machine learning process. The excluded buildings 
were those that possess identical characteristics, such as buildings that 
belong to the same residential complex. Fig. 5 presents the geographical 
distribution of the buildings used for machine prediction. Table 1 pre
sents the building typology distribution of the dataset defined as follows: 
material of the lateral load-resisting system/lateral load-resisting sys
tem/ductility level. As expected, the majority of the surveyed buildings 
(60.96%) are unreinforced masonry structures (MUR/LWAL/DNO), 
which is the most common building typology in Medellín. The material 

Fig. 4. Location of Medellin.  Fig. 5. Surveyed buildings.  
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of the lateral load-resisting system is either concrete (CR) or masonry 
(MUR, MR, MCF). In our dataset, 66.89% of the surveyed buildings are 
masonry structures, while the remaining 33.11% are concrete struc
tures. Regarding building ductility, 17.49% of the buildings in the 
dataset are ductile (DUC) and (82.51%) are nonductile (DNO). 

Fig. 6A describes the spatial distribution of the predominant number 
of stories and the socio-economic stratum at the neighborhood scale. 
Since 1994 Colombia uses socioeconomic strata to classify its population 
in groups with similar socioeconomic characteristics. There exist six 
strata ranging from lower-low (1) to high (6). The variables utilized for 
the socioeconomic characterization are housing characteristics and 
quality of the neighborhood. The spatial patterns show a clear pre
dominance of 1–2-story buildings throughout the city. Fig. 6B presents 
the composition of our dataset in terms of the number of stories and the 
socio-economic stratum. Most of our dataset is concentrated in strata 
1–2 (74.5%) and 3–4 (24.6%) and 82% of the buildings are between 1 
and 4 stories. Finally, Fig. 6C, also based on our database, shows that a 
significative portion of nonductile buildings is concentrated in socio- 
economic strata 1 and 2. 

4. Methodology 

A general outline of the study methodology is shown in Fig. 7. To 
comprehensively understand the deep learning methods applied to this 
problem, the experimental methodology involved executing each 

experiment (1) with five network architectures of different complexities; 
and (2) resampling the original dataset three times to obtain three in
dependent distributions, which were each split into training, testing and 
validation subsets. We averaged the performance metrics across distri
butions to ensure the robustness of our selection. 

Our methodology also applied data augmentation techniques to 
enhance model performance (we generated new images by mirroring, 
rotating and transforming the original images to increase the variability 
of the visual structures), and we tested for the impact of including 
additional information (the number of stories) into the network archi
tectures as shown in Fig. 8. 

At this stage, we decided not to add any object removal algorithm 
(such as for trees or cars occluding the buildings) since our aim with this 
work is to build a solid simple baseline against which we can later 
compare further improvements (including object removal). As our 
research progresses beyond this work, we want to be able to make a 
cost/benefit analysis of each potential improvement. For instance, if 
some additional stage involves a large increase in compute time, or 
memory footprint, etc., but yields modest improvement over the base
line, its applicability could be limited. Right now, we are focused on 
establishing a simple enough CNN based baseline. 

In total, we conducted 30 experiments with the three resampled 
distributions, five network architectures, and two information modes 
(only images and images þ number of stories). The training times 
required between 6 and 13 h and were executed on a computer equipped 
with the Keras/Tensorflow deep learning framework and a K80 NVIDIA 
GPU. 

The following subsections describe each of these aspects in detail. 

4.1. Resampled distributions 

In a typical machine learning experimental workflow, data is used 
for three purposes: (1) training models; (2) tuning model parameters and 
selecting the best-performing model; and (3) measuring the performance 
of the selected models with data not used in any of the previous stages. 
Through these operations, we can obtain an unbiased estimate of the 
model performance, which has a greater chance of being representative 
of the performance that would be observed when the models are applied 
to real-world environments. 

Therefore, the dataset is randomly split into three subsets: training, 
validation and testing, which are used in each of the stages mentioned 
above. The split should be performed carefully so that class proportions 
are preserved and each split remains representative of the full dataset. 
Our splits involved using 60% of the data for training, 20% for valida
tion, and 20% for testing. 

Additionally, we repeated each complete experimental workflow 
three times: each time we performed a random train/test/validation 
split, augmented the data and trained the different network architec
tures using both image-only and multimodal settings (see the sections 
below). This process is depicted in Fig. 7. 

To ensure consistency, we fixed three random train/test/validation 
splits at the beginning of our experimentation. We therefore created 
three data distributions, each consisting of a different 60/20/20 split of 
the full dataset. 

4.2. Data augmentation 

Data augmentation is an important step to reduce overfitting in a 
Deep Learning workflow. It consists of adding noise to the training set to 
avoid the model learning specific patterns and affecting its generaliz
ability to unseen data. Noise is added to the training set by including 
new images derived from the originals after applying geometric trans
formations (e.g., horizontal mirroring, small rotations, and shear 
transformations), cropping a small percentages of the images, or 
applying Gaussian blur. 

Table 1 
Dataset description.  

Building ID Building typology No. of buildings Percentage (%) 

1 CR/LDUAL/DUC 128 1.28 
2 CR/LFINF/DNO 1921 19.23 
3 CR/LFINF/DUC 1081 10.82 
4 CR/LWAL/DUC 128 1.28 
5 MCF/LWAL/DUC 167 1.67 
6 MCF/LWAL/DNO 231 2.31 
7 MR/LWAL/DUC 195 1.95 
8 MUR/LWAL/DNO 6089 60.96  

Fig. 6. Building characteristics according to predominant number of stories, 
socio-economic stratum, and ductility. 
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4.3. Network architectures and model training 

We selected five state-of-the-art CNN networks that have shown 
remarkable success on ImageNet, a large scale classification challenge 
with over 1.5 Million images, 1000 classes, and many other image an
alytic tasks [55]: VGG16, VGG19, InceptionV3, ResNet50, and Xception. 

VGG19 introduces multiple stacks of smaller convolutional filters to 
reduce the number of parameters [56]. InceptionV3 introduces the 
inception module, which is a block of filters of different sizes that 

capture meaningful features at different scales [57]. ResNet50 manages 
the vanishing gradient problem that occurs in truly deep networks by 
using shortcut connections between blocks of convolutional layers to 
allow gradient information to be directly transmitted further down the 
network [58]. Finally, Xception builds on the previous networks and 
introduces a two-step convolution in which a spatial convolution is 
performed independently for each channel in the image, followed by a 
1x1 convolution across all the channels [59]. 

These architectures and their respective pretrained weights on 
ImageNet allow us to use a technique called fine-tuning, in which the 
earlier layers of the network are preserved, retaining the low level visual 
features they learned on the ImageNet dataset, while the later layers are 
retrained to learn features specific to a target domain (our problem in 
this case). Fine-tuning has been shown to improve generalization per
formance on many classification tasks [60]. 

4.4. Multimodal architecture 

Our dataset also includes additional attributes that associate each 
building by its number of stories. Including additional information can 
potentially improve the performance of the classification models, but 
too many attributes affect the possibility of applying the models in 
contexts where similar information is unavailable. 

To understand the value of injecting information about the number 
of stories into the model, we devised two sets of experiments: (1) using 
only images as input; (2) using images plus the number of stories as 
input. The latter approach is denoted as multimodal learning because the 
input information is provided in complementing modalities (images and 

Fig. 7. Methodology workflow.  

Fig. 8. Image only classification architecture (left) and multimodal architec
ture (right). 
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numeric data). 
The image-only models need to be adapted to accept multimodal 

information. To achieve this, we devised a simple three layer multilayer 
perceptron architecture whose input is the number of stories in a one-hot 
encoding with 36 elements (one for each story). In a one-hot encoding of 
n possible values, an integer i is mapped to a n-length zero vector, whose 
i-th position is set to one. For example, the integer values {0, 1, 2, 3} are 
mapped to the vectors {1000, 0100, 0010, and 0001}, respectively. 
Then, we simultaneously inject the image into whichever CNN archi
tecture we are using, and input the number of stories into our percep
tron. Finally, we collate both outputs, which together produce the final 
classification. This procedure is shown in Fig. 8. 

4.5. Performance metrics 

Various performance metrics can be used in classification tasks, but 
no individual metric is fully informative in a general manner. Accuracy 
(the percentage of correct classifications) is arguably the metric most 
often used but is somewhat misleading when the input classes are un
balanced, or the profits and costs from correct and incorrect classifica
tions are not symmetric. In these cases, precision and recall are also 
commonly used metrics. Starting from a confusion matrix like the one 
presented in Table 2, precision is a measure of exactness calculated as 
the percentage of positive predictions that were correct (true positives) 
divided by the number of predicted positives. Recall is a measure of 
completeness calculated as the percentage of positives that were 
correctly identified as such (true positives) divided by the number of 
actual positives). 

In this context, we propose analyzing the results using a two stage 
performance assessment process. First, we use precision and recall with 
respect to the building class typologies that are most likely to be 
damaged in an earthquake(i.e., non-ductile buildings), which includes 
the typologies MUR/LWAL/DNO, MCF/LWAL/DNO, and CR/LFINF/ 
DNO. Therefore, we expect our models to perform well at differentiating 
these typologies from the rest. This aspect measures the classification 
architecture performances based on their capacity to successfully iden
tify fragile structures (i.e., to avoid misclassifying a non-ductile structure 
as ductile) and minimizes the possibility of putting people at risk by 
misclassifying their dwellings. Then, we use accuracy to gain a finer 
understanding of misclassifications on each of the eight types of 
buildings. 

The results are shown in Table 3, in which our best-performing 
model classified all the buildings in each typology, grouped by 
ductility on the first validation distribution. From this table we obtain 
the ductility-based confusion matrix shown in Table 4 by aggregating 
the buildings in each quadrant. Then, we use that confusion matrix to 
compute precision and recall with respect to ductility, as indicated in 
Equations (1) and (2). After completing this process, the recall results 
indicates that 94% of the total relevant results (i.e., non-ductile build
ings) are correctly classified by ResNet50, and the precision indicates 
that 93% of the buildings classified as relevant by ResNet50 (i.e., the 
non-ductile buildings) are actually relevant. 

Then, we use accuracy to inspect each individual class to understand 
the nature and impact of specific misclassifications. For instance, ac
cording to Table 3, out of the 276 buildings classified by ResNet50 as 
class 2, 169 were indeed class 2 buildings—an accuracy of 61%. How
ever, 55 of these (20%) were classified as class 8, but those mis
classifications have no impact on the ductility precision/recall because 

both classes are DNO. Nevertheless, 35 (13%) were misclassified into 
class 3, which does change the ductility assessment. 

4.6. Architecture selection 

Recall and precision are complementary metrics. On the one hand, a 
confusion matrix that produces high recall and low precision indicates 
that the model tends to classify many buildings as positive, but many of 
those predictions are incorrect when compared to the true classifica
tions. On the other hand, a confusion matrix that produces low recall 
and high precision indicates a classification model that correctly iden
tifies true positives, but correctly classifies only a few instances 
compared to the actual number of buildings within the positive or 
relevant category. Therefore, an ideal classification model with both 
high recall and high precision will classify many buildings as positive 
predictions, and those predictions will largely be correct when 
compared against the actual classification. 

Algorithm 1 presents the procedure that we followed to select the 
best classification models. The first part of the algorithm calculates the 
ductility-based recall and precision for each architecture (VGG16, 
VGG19, InceptionV3, ResNet50, and Xception) and input option (image 
only and multimodal). Since we have three independent validation 
distributions (v_dist1, v_dist2, v_dist3), we calculate the average recall 
and precision for each model. Then, we select those cases whose average 
recall is greater than or equal to 0.95 and whose average precision is 
greater than or equal to 0.90. Finally, in the second part of the algorithm 
we apply the selected architectures and input options to the three in
dependent test subsets (t_dist1, t_dist2, t_dist3) and average them. This 
second operation ensures unbiased recall and precision estimates. 

Table 2 
Elements of a confusion table.  

Result Actual Class 1 Actual Class 0 

Predicted Class 1 True Positive False Positive 
Predicted Class 0 False Negative True Negative  

Table 3 
Confusion matrix using ResNet50 (image input only) on the first distribution of 
the validation subset.  

Predicted class Actual class 

DNO DUC  

2 6 8 1 3 4 5 7 Total 

DNO 2 169 4 55 0 35 1 6 6 276 
6 10 7 12 0 0 0 5 0 34 
8 159 29 1104 0 18 0 28 24 1362 

DUC 1 1 0 0 11 31 3 0 0 46 
3 27 0 0 17 105 5 0 0 154 
4 2 0 1 7 17 18 0 1 46 
5 7 5 18 0 0 0 1 0 31 
7 17 0 17 0 2 2 1 10 49 

Total 392 45 1207 35 208 29 41 41 1998 

1:CR/LDUAL/DUC, 2:CR/LFINF/DNO, 3:CR/LFINF/DUC, 4:CR/LWAL/DUC, 5: 
MCF/LWAL/DUC, 6:MCF/LWAL/DNO, 7:MR/LWAL/DUC, 8:MUR/LWAL/ 
DNO. 

Table 4 
Ductility-based confusion matrix using ResNet50 (image input only) on the first 
distribution of the validation subset. 

recallDuctility ¼
1; 549

1; 549þ 95
¼ 0:94 (1)  

precisionDuctility ¼
1; 549

1; 549þ 123
¼ 0:93 (2)    

DNO DUC Total 

DNO 1549 123 1672 
DUC 95 231 326 
Total 1644 354 1998  
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Algorithm 1. Ductility-based Architecture Selection

5. Results 

Following the architecture selection process described above, 
Table 5 lists the validation (top table) and test (bottom table) metrics for 

all the considered architectures and distributions. In particular, note (1) 
the similar behavior of the test and validation splits across the different 
distributions, indicating a desirable representativity of the data; and (2) 
that no distinguishability exists between models regarding precision; 
thus, we use recall to select the best model. The three best architectures 
whose avg rec values are above 95% are Resnet50i, Xceptioni, and 
Resnet50m. Although these three models achieve the same validation 
performance, we selected Resnet50i because it uses less information 
than does Resnetm, and its computational training time was approxi
mately half that of the other algorithms because its optimization process 
converged faster. Fig. 9 presents the mean aggregated confusion matrix 
for the three distributions on the Resnet50i architecture. The obtained 
results are encouraging because, on average, 89.8% of the buildings are 
classified in their correct ductility categories. However, 4.4% of the 
buildings are classified as ductile when in fact they are not (this is 
precisely the type of error that we seek to minimize) while 5.8% of the 
buildings are classified as non-ductile when in fact they are. While the 
first type of error underestimates risk because it fails to capture 

Table 5 
Results from Algorithm 1.   

Recallv  Precisionv  

dist1 dist2 dist3 avg  dist1 dist2 dist3 avg  

Vgg16a 0.86 0.88 0.91 0.88 0.94 0.93 0.93 0.93 
Vgg16b 0.89 0.85 0.85 0.86 0.94 0.92 0.93 0.93 
Vgg19a 0.91 0.93 0.91 0.92 0.94 0.92 0.93 0.93 
Vgg19b 0.93 0.89 0.88 0.90 0.94 0.92 0.93 0.93 
InceptionV3a 0.93 0.92 0.91 0.92 0.93 0.92 0.92 0.93 
InceptionV3b 0.93 0.92 0.93 0.93 0.93 0.93 0.92 0.93 
Xceptiona 0.96 0.94 0.95 0.95 0.93 0.93 0.92 0.93 
Xceptionb 0.89 0.94 0.95 0.93 0.95 0.93 0.93 0.93 
Resnet50a 0.95 0.95 0.95 0.95 0.94 0.92 0.92 0.93 
Resnet50b 0.96 0.95 0.95 0.95 0.95 0.92 0.91 0.93  

Recallt  Precisiont  

dist1 dist2 dist3 avg  dist1 dist2 dist3 avg  

Vgg16a 0.85 0.88 0.91 0.88 0.93 0.93 0.94 0.94 
Vgg16b 0.87 0.85 0.84 0.85 0.93 0.93 0.94 0.94 
Vgg19a 0.88 0.94 0.94 0.90 0.92 0.93 0.93 0.93 
Vgg19b 0.91 0.90 0.88 0.90 0.93 0.94 0.94 0.94 
InceptionV3a 0.93 0.93 0.92 0.93 0.92 0.94 0.94 0.93 
InceptionV3b 0.94 0.92 0.93 0.93 0.92 0.94 0.93 0.93 
Xceptiona 0.96 0.95 0.96 0.96 0.93 0.94 0.94 0.93 
Xceptionb 0.88 0.93 0.95 0.92 0.93 0.94 0.94 0.94 
Resnet50a 0.94 0.94 0.96 0.95 0.93 0.93 0.93 0.93 
Resnet50b 0.95 0.96 0.96 0.95 0.93 0.93 0.93 0.93  

a Image only. 
b Multimodal. 

Fig. 9. Confusion matrix for avg_rec ¼ 0:786
0:786þ0:44 ¼ 0:95 and avg_prec ¼

0:786
0:786þ0:58 ¼ 0:93 (resnet50_i_test mean of the three distributions). The entire 
matrix adds up to 100% focusing on the overall magnitude of correct and 
incorrect predictions with respect to the total population. 
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buildings at potential risk, the second type of error overestimates the 
number of structures and humans at risk. 

Next we evaluate the performance of the selected architecture when 
classifying each of the 8 building typologies. Fig. 10 reports the accuracy 
for each individual building typology. The best performance is obtained 
for typologies 2, 8 and 3, with accuracy levels above 60%. Observe that 
many misclassifications occur within the diagonal quadrants, which has 
little impact from the ductility perspective. For instance, 70% of typol
ogy 1 predictions are actually typology 3, but the model still correctly 
predicts the ductility nature of those misclassified buildings. Note also 
that 86% of the typology 5 predictions are incorrectly classified: their 
actual typologies are either 2 or 8. However, these classes are much less 
frequent overall. According to Fig. 9 all the DNO buildings classified by 
the model as DUC amount to only 4.4% of the total. Remarkably, 
however, this matches the stability of results reported in Table 5; we can 
obtain significant recall improvements only by using more sophisticated 
architectures. This result reflects the fact that a nominal recall level 
(about 0.88) is relatively easy to obtain, but improving the recall further 
is considerably more difficult. 

We used ductility to select the best model because we consider it 
important to minimize the errors in classifying non-ductile structures as 
ductile (i.e., we want to avoid errors that could led to underestimation of 
the risk). Furthermore, it is important to understand the performance of 
other parameters, such as material of the lateral load-resisting system 
(LLRS). The dataset includes two types of materials: reinforced concrete 
(CR-buildings with ids of 1–4) and masonry (M-buildings with ids of 
5–8). Fig. 11 shows the accuracy of material prediction, from which it 
can be seen that the accuracy levels exceed 85% for both types of ma
terial. Fig. 10 shows that misclassifications greater than or equal to 10% 
on the material of the LLRS occur for only one type of CR building, CR/ 
LFINF/DNO (id 2), which are misclassified as all types of masonry (ids 5 
to 8) and one type of M building, MUR/LWAL/DNO (id 8), that is 
classified as CR/LFINF/DNO (id 2). These errors are concentrated in one 
building class: CR/LFINF/DNO (id 2), which is an expected mistake 
because this building typology consists of CR beams and columns infilled 
with masonry walls; therefore, in this typology, the material of the LLRS 
can easily be mistaken for masonry. 

When both building ductility and material of the LLRS are consid
ered, the accuracy levels exceed 60% for all the typologies except MCF/ 
LWAL/DUC (id 5) and MR/LWAL/DUC (id 7). For this analysis, the 
values from each row of Fig. 10 with same ductility and material as the 
predicted typology must be added, e.g. for building typology 4, with 
DUC-ductility and CR-material, accurate predictions took place for ty
pologies 1, 3 and 4, achieving a total accuracy level of 88% (15% þ 33% 
þ 40%). The accuracy levels for both ductility and material are as fol
lows: 62% for CR/LFINF/DNO (id 2); 65% for MCF/LWAL/DNO (id 6); 
83% for MUR/LWAL/DNO (id 8); 99% for CR/LDUAL/DUC (id 1); 80% 
for CR/LFINF/DUC (id 3); 88% for CR/LWAL/DUC (id 4); 8% for MCF/ 
LWAL/DUC (id 5); and 20% for MR/LWAL/DUC (id 7). Clearly, the 
model has problems correctly identifying typologies 5 and 7. However, 
these two typologies are difficult to identify from images because MCF/ 
LWAL/DUC (id 5) has masonry walls with horizontal and vertical rein
forced concrete elements, making it easy to misclassify as MUR/LWAL/ 
DNO (in which masonry walls are predominant) and CR/LFINF/DNO (a 
typology that also has masonry walls with RC elements) can easily be 
misclassified as MCF/LWAL/DUC. On the other hand, MR/LWAL/DUC 
(id 7) typology corresponds to a masonry wall construction in which 
reinforcement is embedded; therefore, the reinforcement is not exposed 
in the structure. Consequently, identification of this typology from only 
an image is not an easy task, and buildings in which concrete elements 
are covered or do not exist may be misclassified as MR/LWAL/DUC 
buildings. 

Although the ductility and material accuracy levels are high, certain 
misclassifications occur at the typology level. Thus, the next question is: 
Are those mistakes plausible even to an expert’s eye? Therefore, we 
summarize the opinions of expert engineers regarding the most common 
errors found in our classification model below.  

� 70% of the buildings classified as CR/LDUAL/DUC (id 1) are actually 
CR/LFINF/DUC (id 3) buildings: both typologies are usually tall 
buildings with beam-and-column systems. The difference between 
those typologies is the presence of reinforced walls in the CR/ 
LDUAL/DUC system; sometimes, however, those reinforced walls are 
not easily discernable from an image because they are covered by the 
façade or exist inside the building. Even a trained engineer may be 
hesitant to classify this typology from an image.  
� 58% of the buildings classified as MCF/LWAL/DUC (id 5) and 41% of 

the buildings classified as MCF/LWAL/DNO (id 6) are actually MUR/ 
LWAL/DNO (id 8) buildings: From Fig. 1 it can be observed that the 
three typologies have a lateral load-resisting system made of ma
sonry that all show similar patterns and colors in the images. The 
subtle difference between these three typologies is the presence of 
confining elements such as thin columns and beams in the MCF/ 
LWAL typologies (5 and 6). 

Fig. 10. Confusion matrix 8 classes for accuracy (resnet50_i_test mean of the 
three distributions). Each row adds up to 100%. We focus on how the pre
dictions of each typology are distributed with respect to actual values. (CR: 
concrete; M: masonry). 

Fig. 11. Confusion matrix for material accuracy (resnet50_i_test mean of the 
three distributions). Observe that each row adds up to 100% so that we focus on 
accuracy per class (i.e. 88.9% of the times the model predicted CR it was 
correct, where are 84.8% of M predictions were correct. 
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� 40% of buildings classified as MR/LWAL/DUC (id 7) are actually 
MUR/LWAL/DNO (id 8) buildings: Differentiating between these 
two typologies is difficult even for experts because the differences are 
not visible in the façade: reinforcement in MR/LWAL/DUC (id 7) 
buildings is embedded in the masonry. Thus, both typologies have 
similar external appearances.  
� 33% of the buildings classified as CR/LWAL/DUC (id 4) are actually 

CR/LFINF/DUC (id 3) buildings: Both typologies refer to tall build
ings with similar external shapes. As addressed earlier, it is common 
to cover the building façade with masonry elements, which prevents 
correctly identify the wall material—in this case, concrete for id 4 
and masonry for id 3.  
� 33% of buildings classified as MR/LWAL/DUC (id 7) are actually CR/ 

LFINF/DNO (id 2) buildings: MR/LWAL/DUC (id 7) is a building 
typology difficult to identify from an image because it consists of 
walls with embedded reinforcement that cannot be seen in the 
façade; therefore, the masonry wall is the most prevalent feature of 
the image. On the other hand, buildings with CR/LFINF/DNO (id 2) 
typology have reinforced concrete elements (beams and columns) 
with bays infilled with masonry walls. Once again, the masonry wall 
is the more distinctive feature in the image.  
� 28% of buildings classified as MCF/LWAL/DUC (id 5) are actually 

CR/LFINF/DNO (id 2) buildings: both these typologies have rein
forced concrete columns and beams with the presence of masonry 
walls. Although the dimensions of the concrete elements are smaller 
in the MCF/LWAL/DUC (id 5) images, it is difficult to extract this 
particular characteristic from the image. 

Finally, we present the confusion matrix for the best multimodal 
architecture in Fig. 12 to evaluate the impact from including the number 
of stories. The results show a slight reduction in misclassifications such 
as CR/LFINF/DNO is observed for MCF/LWAL/DNO (� 4%), MCF/ 
LWAL/DUC (� 7%) and MR/LWAL/DUC (� 5%). We noticed minor im
provements on some of the more difficult classes to predict, such as CR/ 
LDUAL/DUC (þ4%), CR/LWAL/DUC (þ4%), and MCF/LWAL/DUC 
(þ5%). Including the number of stories in the architectures provides 

some contribution to improving the predictions for a subset of classes; 
however, when considering its operational implications in terms of both 
data collection and application of these models in other contexts, these 
gains become less significant. 

6. Conclusions 

This study used a manually annotated dataset of approximately 
10,000 photos at the street level within the urban area of Medellín to 
explore the potential of using a CNN to classify buildings according to 
their lateral load-resisting system. Among the five network architectures 
trained in this study, ResNet50 showed the best performance because it 
classified fewer non-ductile buildings as ductile (4.4%). Ductility was 
the parameter chosen to define the best architecture because we 
considered it important to minimize the errors of classifying non-ductile 
buildings as ductile (i.e., we wanted to avoid errors that could under
estimate risk). Comparisons of the metrics among the architectures 
when using only image input (i) and architectures using multimodal 
input (m) indicates only a limited impact of including the number of 
stories as additional input. 

The selected architecture had a non-ductile recall accuracy of 
approximately 95% on the material type—85% for masonry and 89% for 
concrete—and a typology accuracy exceeding 60% on three of the eight 
building typologies. Although the typology accuracy was considered 
successfully for only three of the eight considered typologies (CR/ 
LFINF/DNO, CR/LFINF/DUC and MUR/LWAL/DNO), the accuracy 
levels for both ductility and material type indicate the reliability of the 
results for predicting such characteristics and constitutes useful infor
mation that can be used by exposure modelers. Notably, the buildings of 
the three typologies with the highest accuracy constitute 91% of the 
buildings in the dataset. Future research should concentrate on two di
rections. First, the performance of this approach in cities that include 
building typologies not covered in this work should be explored. Second, 
because unreinforced masonry is the most common typology in the 
dataset, the potential of CNN to classify floor diaphragm types, which 
can also be critical for improving the classification performance of un
reinforced masonry buildings, should be explored. 

The outputs of our model are intended to be used by an exposure 
model developer aiming to reduce the implementation cost. The good 
performance of our model in detecting ductility and building material 
can be used either to classify exhaustively all the buildings in small cities 
or in big cities to process a spatially-distributed sample of buildings that 
can be used to interpolate ductility and material for the rest of the city 
[9,17]. Predictions on building typologies should be used with caution 
as for some building classes the CNN performance is not good enough for 
a direct building classification. However, the information provided by 
the CNN could be used together with additional information, such as 
census data and expert judgment, to produce a more accurate building 
classification. 

A risk assessment requires three input models: seismic hazard (the 
probability of earthquake occurrence), vulnerability (building ability to 
sustain earthquake loads), and exposure (inventory of exposed assets); 
all of them should be suitable for the location where the risk is assessed. 
Over the last decades, efforts have been made to produce seismic hazard 
assessments, which are now available at different scales worldwide. As a 
matter of fact, seismic design codes use results from seismic hazard as
sessments to define seismic actions for structural design. Regarding the 
second input, the vulnerability model, there is a vast number of 
vulnerability studies that can be used, or adapted if required, to generate 
the vulnerability model. Finally, contrary to seismic hazard assessments 
that are available at different scales and vulnerability models that are 
either available or may be adapted from existing ones, the exposure 
models must necessarily be developed specifically for the studied loca
tion. Unfortunately, exposure models have not received as much atten
tion as the hazard and vulnerability models, especially in emerging 
countries where the information required for its development is difficult 

Fig. 12. Confusion matrix 8 classes for accuracy (resnet50_m_test mean of the 
three distributions) when using the multimodal input (i.e., images plus the 
number of stories). Each row adds up to 100%. We focus on how the predictions 
of each typology are distributed with respect to the actual values. (CR: concrete; 
M: masonry). 
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to access. Also, the development of an exposure model is a time and 
resource-consuming activity as it must have a detailed description of the 
exposed buildings. It is in this context in which our methodology be
comes a significant contribution to seismic risk assessment. 
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