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Abstract 

In this article, we propose a new methodology based on a (log) semi-nonparametric (log-

SNP) distribution that nests the lognormal and enables better fits in the upper tail of the 

distribution through the introduction of new parameters. We test the performance of the 

lognormal and log-SNP distributions capturing firm size, measured through a sample of US 

firms in 2004-2015. Taking different levels of aggregation by type of economic activity, our 

study shows that the log-SNP provides a better fit of the firm size distribution. We also 

formally introduce the multivariate log-SNP distribution, which encompasses the 

multivariate lognormal, to analyze the estimation of the joint distribution of the value of the 

firm’s assets and sales. The results suggest that sales are a better firm size measure, as 

indicated by other studies in the literature. 

Keywords: Firms size distribution; Heavy tail distributions; Semi-nonparametric modeling; 

Bivariate distributions. 
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1. Introduction 

Studies of firm size distribution have raised great interest among researchers in the 

fields of physics and economics [1] [2] [3] [4]. This topic is relevant because knowledge 

about the shape of the firm size distribution can provide researchers and policymakers with 

information about the levels of industrial concentration and economic cycles that is useful in 

implementing competition policies [5] [6]	[7].		

In a pioneering study on firm size, Gibrat [8] found that firm size could be described 

by the lognormal distribution. Since then, several studies have supported the use of this 

distribution [1] [9]. However, different types of distributions have been proposed. Some 

empirical studies have argued that the size distribution can be adjusted according to a Pareto 

or power-law distribution [10] [11] or that it can be well estimated based on Zipf’s law [12]. 

A strand of the empirical literature has thus sought to examine the application of 

lognormal and Pareto or power-law distributions using firm size data as cross-sectional data 

[13] [14] [15]. However, there is evidence that, on some occasions, a poor approximation of 

the empirical distributions of the firm size in the upper tail, which typically exhibit greater 

asymmetry as a small number of large firms exist alongside a large number of smaller firms 

[1] [12] [16], is obtained.  

For example, in their article, Stanley et al. [1] find that the size distribution for a series 

of firms listed in the US stock market has a good fit with the lognormal distribution, with the 

exception of the upper tail. In this case, the lognormal distribution overestimates the size of 

the large firms. On the other hand, Goddard et al. [15] examine firm size among banks and 

credit unions based on Zipf’s law. Their study rejects Zipf’s law as a descriptor of the firm 

size distribution in the upper tail. 

The differences obtained in applying these types of firm size distributions have led 

researchers in this area to discuss the stability of a single firm size probability model over 

time and across industries and countries [5] [17] [13] [14] [18]. These discrepancies likely 

occur because the distributions that are traditionally used to model data with very thick tails 

have the disadvantage of relying on very few parameters for capturing the entire shape of the 



firm size distribution, including its right tail [18]. In this regard, Newman [19] and Martínez-

Mekler et al. [20] state that few processes in the real world follow the Pareto or power-law 

distribution across their entire range and, in particular, these types of distributions do not fit 

the smaller values of the variable being measured.  

Meanwhile, the common point of departure under the hypothesis of Zipf’s law is to 

assume that the firm size distribution is well described by a Pareto or power-law distribution 

above a certain minimum threshold [21] [15] [16] [22]. In this manner, if we seek to study 

the growth of smaller firms compared to that of larger firms, then we cannot use a Pareto or 

power-law distribution because the small firms are found in the upper tail, below the 

threshold value [2] [23].  

With the objective of modeling the firm size distribution, we propose to use semi-

nonparametric approximations (SNP) based on Edgeworth and Gram-Charlier expansions. 

These distributions have been applied in very diverse fields in which precision in measuring 

distribution tails is important for correctly measuring the occurrence of extreme values (for 

examples of applications in thermodynamics, astronomy, finance and scientometrics, see 

Kuhs [24], Blinnikov and Moessner [25], Mauleon and Perote [26] and Cortés et al. [27], 

respectively).  

In this article, for the first time, we propose to use these distributions to model the 

firm size distribution, and in particular, we propose logarithmic transformations of an SNP 

distribution (log-SNP), which are extensions of a lognormal distribution that enable an 

approximation of any empirical distribution through the introduction of additional 

parameters. With this transformation, we seek to maintain the parameter flexibility of the 

Gram-Charlier distributions while restricting the domain of positive values. We find that in 

comparison to the lognormal distribution, the log-SNP distribution provides a better fit in 

modeling the firm size distribution using different levels of industrial aggregation. We also 

show that the log-SNP distribution allows us to obtain a better fit in the upper quantiles 

without having to impose a minimum threshold. This aspect is important because 

understanding the behavior of the largest firms and those with the greatest weight in the 

market is essential for analyzing the economy as a whole [23]. Additionally, we extend the 

log-SNP to the multivariate context by providing an expression for the bivariate log-SNP 



distribution, whose marginal densities act as univariate distributions of the log-SNP. The 

advantage of developing a multivariate framework is based on the fact that more efficient 

estimations are obtained, making it possible to jointly analyze the behavior of variables that 

are highly correlated and testing differences in marginal specifications through traditional 

linear restrictions tests – likelihood ratio (LR), Wald or Lagrange multipliers (LM). 

This paper is structured as follows. Section 2 provides the definitions and main 

characteristics of both univariate and bivariate log-SNP distributions. Section 3 compares the 

performance of these distributions to their nested lognormal counterparts for studying the 

size of a sample of US firms in different industries and analyzes ‘sales’ and ‘assets’ for 

measuring firm size. The final conclusions are summarized in the last section. 

2. Log-SNP distribution  

This section defines the log-SNP probability density function (PDF) and provides a 

straightforward extension of this distribution to the multivariate case. Because this 

distribution is a logarithmic transformation of the so-called Gram-Charlier (or SNP) 

distribution, we begin by defining this class of densities and reviewing some of its main 

properties. 

Definition 2.1: The Gram-Charlier density of a random variable !" is a general class of 

densities of the type 

# !"; %& = ((!") +",-,(!").
,/0 = ((!")1"(!"), !" ∈ ℝ,      (1) 

where ( !" = 4
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Hermite polynomial1, %& = +"4, … , +"B ′ ∈ ℝ. and n is the (even) order of the expansion. 

																																																													
1 The first Hermite polynomials are -0 !" = 1, -4 !" = !", -5 !" = !"
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H − 6!"
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The condition +"0 = 1 is sufficient to guarantee that function (1) integrates one, but 

non-negativity is not guaranteed for all %& ∈ ℝ.; thus, positivity constrains must be 

considered to ensure a well-defined family of densities.2 

This density nests the standard normal (when %& = 0) and presents two main 

advantages with respect to other PDFs used to fit empirical distributions: (i) It incorporates 

enough degrees of freedom to capture any moment of the distribution with a flexible 

parametric structure; and (ii) the asymptotic expansion (as n®¥) captures the true 

distribution – see Jarrow and Rudd [28]. Moreover, despite its apparent complexity, the 

Gram-Charlier PDF is very tractable due to the orthogonality of the Hermite polynomials, 

which satisfy, among other properties, the following: 

-, ! -L ! ( ! +! =
0, N ≠ P
N!, N = P

R
8R .                  (2) 

For instance, the cumulative distribution function (CDF) and the moment generating 

function (MGF) can be computed, respectively, as follows: 

# !", %& +!"
S
8R = ( !" +!" − ((T) +",-,84(T).

,/4
S
8R     (3) 

and  

7U;<# !", %& +!" =
R
8R 7U

:/5 +",W,.
,/0 .       (4) 

Therefore, it can be easily checked that the even (odd) moment of order k depends on 

the k first even (odd) parameters. For instance, if +4	= 0, then the density has a zero mean, 

and +F accounts for asymmetry; and if +5	= 0, then the density has unit variance, and +H 

captures excess kurtosis. 

Definition 2.2: Let Y" be log-SNP distributed with location parameter	Z" ∈ ℝ, scale ["5 ∈

ℝ\ and shape parameters %& = +"4, … , +"B ′ ∈ ℝ.. Then, its PDF can be expressed as 

follows:  

																																																													
2 For a description of the positivity region in terms of skewness and kurtosis, see Jondeau and Rockinger [39]. 
Alternatively, Gram-Charlier can be defined as #∗ !"; % = ((!")1"(!")5, though at the cost of an increasing 
complexity. However, the positive formulation can be represented in terms of a larger expansion of the type 
defined in (1) – see León et al. [40] – and maximum likelihood estimation algorithms necessarily converge to 
values that guarantee a well-defined PDF.  
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Consequently, the log-SNP is the exponential transformation of a Gram-Charlier 

distributed variable, i.e., Y" = exp	(!"), where !" is distributed according to the PDF (1), 

which has also been “location-scale” transformed so that the lognormal distribution is a 

particular case (for %& = 0). The resulting density presents the same parameter flexibility as 

the Gram-Charlier but is defined only on the positive real axis. The properties of this 

distribution can be easily obtained from those of the Gram-Charlier – for further details, see 

Ñíguez et al. [29] and [30]. In particular, central moments can be obtained directly from the 

MGF of the Gram-Charlier distribution – equation (4) – as follows: 

m Y"U = 7b<U\
9
:
U:c<: 1 + +",(["W),.

,/4 .        (6) 

Both the Gram-Charlier and the log-SNP can be extended to the multivariate case in 

different ways. This paper defines the multivariate log-SNP PDF in terms of the so-called 

multivariate Edgeworth-Sargan density defined by Perote [31]. In what follows and without 

loss of generality, we describe the bivariate case, which is applied in next section.  

Definition 2.3: Let Z= Y4, Y5 ′ ∈ ℝ5\ be a random vector distributed in the bivariate log-

SNP with the mean µ = µ4,µ5
n
∈ ℝ5 and the (positive definite) variance matrix 

S=
[45 r[4[5

r[4[5 [55
, [& > 0, i=1,2, and r < 1. Thus, the joint density of Z is described by 
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where s q  is a multivariate lognormal distribution – Aitchinson and Brown [32] – 
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( !"  is the standard normal and 1" !" = +",-,
_` a< 8b<

c<
.
,/0 , i=1,2. 

The marginal densities of this multivariate log-SNP are distributed as the univariate 

log-SNP – equation (5) – and therefore, empirical applications are very tractable because the 

parameter estimates of the marginals can be used as initial values for the joint estimation 

maximum likelihood (ML) procedures, and the relationship between (sample) moments and 

density parameters can be exploited for this purpose.  

3. Distribution of firm size 

3.1. Data description and statistics 

Our study is conducted using a group of firms in the United States during the 2004-

2015 period. The analysis is based on financial information from the set of firms available in 

the Thomson Reuters Datastream, a global database with time series reports on the accounts 

of firms listed in the stock markets. The following selection criteria were applied to the 

available information to obtain the final sample utilized for the estimation: Firms that did not 

have accounting data for the review period were excluded. Only companies that were active 

during this period (total assets and positive operating results) were considered. Firms with 

no available Standard Industrial Classification (SIC) code were also excluded. Given these 

criteria, a total sample of N=2,349 firms per year was used.3 

Additionally, to analyze the firm size distribution by groups according to economic 

activity, the firms were divided in the following manner: Manufacturing (SIC codes 20-39), 

Non-manufacturing (SIC codes 10-14, 15-17, 40-49, 50-51, 52-59 and 70-89), Finance, 

Insurance and Real Estate (SIC codes 60-67) and Economy-wide, which includes all three 

aforementioned groups. Finally, the variable used to measure firm size is the value of average 

sales in dollars (USD).  

																																																													
3 Note that in this study, we are not controlling for changes in the shape of the distribution of firms by the 
entrance and exit of companies or by mergers and acquisitions (M&As). In this regard, Cefis et al. [38] 
determine that M&As do not affect the size of the distribution when considering the entire population of firms. 
This result could be due to the balancing effect in which the entrance and exit of firms counteract the effect of 
M&As. However, this issue is presented as a limitation of the present study. 



Table 1 contains the descriptive statistics for each of the four groups of industries 

examined in this study. The table shows the temporal behavior at the moments of distribution, 

calculated to the fourth order. In particular, the third and fourth central moments provide 

useful information regarding the shape of the distribution, in addition to the average and 

standard deviation. In general, the firm size distribution presents positive skewness, with a 

very large presence of small firms. The positive kurtosis also shows that the upper tail of the 

distribution is heavier than that observed in a lognormal distribution.  

In the long term, for the groups of firms in Non-manufacturing and Finance, Insurance 

and Real Estate industries, the four moments exhibit a slight increase. However, in the 

Manufacturing industry, the tendency is reversed by the year 2013. In general, observing the 

Economy-wide category during the period studied, the firm size distribution became less 

dispersed around the average, less skewed toward the small firms and less thick at the tails.  

 
 
Table 1 Descriptive statistics  

Industry Statistic 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Manufacturing 
(N=947) 

Min x106  0.019  0.023  0.007  0.008  0.046  0.008  0.008  0.008  0.002  0.004  0.030  0.003  
Mean x109 3.38  3.80  4.06  4.35  4.79  3.94  4.44  5.04  4.99  4.96  4.99  4.55  
Max x109 263.99  328.21  335.09  358.60  425.07  275.56  341.58  433.53  420.71  390.25  364.76  236.81  
St.Dev x1010 1.45  1.71  1.76  1.86  2.15  1.55  1.81  2.18  2.06  1.99  1.93  1.61  
Skewness 10.90  11.68  11.39  11.49  12.16  9.85  10.71  11.83  11.93  11.18  10.56  8.92  
Kurtosis 152.15  175.94  169.26  173.18  191.72  130.63  156.48  188.62  198.25  172.76  154.41  103.90  

Non-
manufacturing 

(N=784)  

Min x106 0.025  0.035  0.046  0.021  0.034  0.048  0.050  0.007  0.005  0.002  0.009  0.001  
Mean x109 2.76  3.08  3.37  3.70  4.04  3.73  4.01  4.45  4.69  4.91  5.20  5.12  
Max x109 96.29  91.13  91.42  118.93  124.03  123.02  124.28  126.72  127.43  128.75  139.37  179.05  
St.Dev x1010 0.79  0.84  0.92  1.06  1.14  1.14  1.18  1.28  1.37  1.40  1.49  1.60  
Skewness  6.32  6.00  6.03  6.47  6.27  6.79  6.42  6.06  6.05  5.89  6.00  6.81  
Kurtosis 51.25  45.00  44.41  50.61  47.36  53.89  48.49  43.18  42.36  40.15  41.87  53.91  

Finance, 
Insurance & 
Real Estate 

(N=618)  

Min x106 0.026  0.021  0.013  0.011  0.011  0.017  0.008  0.009  0.012  0.003  0.016  0.003  
Mean x109 2.11  2.44  2.88  3.19  2.91  3.09  3.39  3.41  3.53  3.54  3.61  3.72  
Max x109 108.28  120.28  146.56  159.23  112.45  143.27  155.70  146.70  160.84  179.54  194.17  209.85  
St.Dev x1010 0.90  1.04  1.27  1.41  1.18  1.32  1.50  1.46  1.48  1.47  1.50  1.57  
Skewness 7.54  7.32  7.31  7.29  6.62  7.01  6.98  6.70  6.58  7.03  7.30  7.72  
Kurtosis 68.07  62.53  60.62  59.55  48.53  54.74  53.50  49.57  48.72  58.65  65.28  74.26  

Economy-wide 
(N=2349)  

Min x106 0.019  0.021  0.007  0.008  0.011  0.008  0.008  0.007  0.002  0.002  0.009  0.001  
Mean x109 2.84  3.20  3.52  3.83  4.04  3.65  4.02  4.41  4.51  4.57  4.70  4.52  
Max x109 263.99  328.21  335.09  358.60  425.07  275.56  341.58  433.53  420.71  390.25  364.76  236.81  
St.Dev x1010 1.13  1.30  1.40  1.51  1.64  1.37  1.54  1.74  1.70  1.68  1.68  1.60  
Skewness 11.16  12.13  11.18  10.89  12.59  8.81  9.62  11.25  10.64  9.87  9.13  7.89  
Kurtosis 182.20  219.63  185.53  175.95  241.23  108.94  137.87  199.19  183.50  152.72  125.97  79.39  

 



Figure 1 plots the density and the logarithm of the variable of sales, resulting from a 

softening of the corresponding histogram. To obtain a better visualization of the densities, 

three years (2004, 2009 and 2015), randomly selected, are displayed. The behavior described 

above can be observed for each of the four groups of industries. Additionally, it is clear that 

the firm size distributions have a different shape from the lognormal and are also bimodal or 

even multimodal, as in the studies by Marsili [14] and Bottazzi et al. [33]. 

 

Figure 1 Empirical density of the logarithm of sales  

 

3.2. Results and discussion  

Tables 2-5 present the ML estimation of the univariate case for each of the four groups 

of industries and 12 years selected in the sample. Panel A shows the estimated parameters 

for the lognormal distribution, and Panel B those of the log-SNP distribution. In Panel C, the 

LR statistic for the comparison of the log-SNP versus the lognormal is displayed.



Table 2 Estimation of the firm size distribution under lognormal and log-SNP, Manufacturing Industry  

Year Panel A lognormal   Panel B log-SNP   Panel C LR 
µ σ logL AIC KS test  µ σ d1 d2 d3 d4 logL AIC KS test  

2004 5.3598 2.7296 -7370.44 14744.87 (0.0231)  3.9696 2.1032 0.6610 0.5607 0.1308 0.0673 -7357.01 14726.02 (0.6906)  26.86 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (0.0030) (0.0023)   Not rejected*  (<.0001) 

2005 5.4834 2.7026 -7478.08 14960.15 (0.1427)  3.9566 2.1056 0.7251 0.5866 0.1631 0.0690 -7466.14 14944.28 (0.4308)  23.87 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (0.0003) (0.0011)   Not rejected*  (<.0001) 

2006 5.6136 2.6747 -7591.56 15187.13 (0.1754)  3.9653 2.1235 0.7763 0.5946 0.1842 0.0633 -7580.17 15172.34 (0.2831)  22.79 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (0.0022)   Not rejected*  (0.0001) 

2007 5.7088 2.6693 -7679.77 15363.55 (0.2584)  3.9904 2.1016 0.8177 0.6409 0.2095 0.0789 -7666.27 15344.55 (0.8677)  27.00 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2008 5.7688 2.6581 -7732.62 15469.24 (0.3981)  4.1036 2.0983 0.7936 0.6173 0.2024 0.0735 -7721.31 15454.63 (0.8022)  22.61 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (0.0002) 

2009 5.6448 2.6342 -7606.57 15217.14 (0.1584)  3.8858 2.1308 0.8255 0.6049 0.2011 0.0713 -7595.21 15202.42 (0.1939)  22.72 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (0.0001) 

2010 5.7446 2.6509 -7707.10 15418.19 (0.2138)  3.7281 2.2052 0.9144 0.6406 0.2235 0.0708 -7693.91 15399.83 (0.9740)  26.37 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2011 5.8257 2.7323 -7812.53 15629.07 (0.3981)  3.6698 2.2339 0.9651 0.7137 0.2389 0.0836 -7790.51 15593.02 (0.8962)  44.05 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2012 5.8615 2.7386 -7848.61 15701.22 (0.1283)  3.7389 2.2005 0.9646 0.7397 0.2500 0.0922 -7824.27 15660.53 (0.2353)  48.69 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2013 5.8823 2.7532 -7873.40 15750.80 (0.0010)  3.6045 2.2394 1.0172 0.7731 0.2708 0.0927 -7845.51 15703.02 (0.6133)  55.78 

 (<.0001) (<.0001)   Rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2014 5.9594 2.6853 -7922.73 15849.45 (0.0131)  3.9886 2.0708 0.9517 0.7937 0.2806 0.1059 -7897.59 15807.17 (0.8962)  50.28 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2015 5.9591 2.6700 -7917.02 15838.05 (0.0820)  4.0037 2.0577 0.9503 0.7933 0.2729 0.1065 -7888.91 15789.83 (0.9740)  56.22 

  (<.0001) (<.0001)     Not rejected   (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)     Not rejected*   (<.0001) 
P-values are in parentheses. Not rejected* indicates a better fit in the KS test. 

 



Table 3 Estimation of the firm size distribution under lognormal and log-SNP, Non-manufacturing Industries 

Year Panel A lognormal   Panel B log-SNP   Panel C LR 
µ σ logL AIC KS test  µ σ d1 d2 d3 d4 logL AIC KS test  

2004 5.6920 2.5976 -6323.36 12650.72 (0.2340)  4.1361 1.9310 0.8058 0.7294 0.1884 0.0725 -6297.28 12606.57 (0.9171)  52.16 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (0.0003) (0.0055)   Not rejected*  (<.0001) 

2005 5.8579 2.5606 -6442.18 12888.37 (0.1058)  4.4427 1.8864 0.7502 0.7027 0.1726 0.0616 -6416.19 12844.38 (0.8203)  51.99 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (0.0073) (0.0202)   Not rejected*  (<.0001) 

2006 5.9917 2.5499 -6543.85 13091.70 (0.0317)  4.5243 1.8624 0.7880 0.7478 0.1902 0.0711 -6514.36 13040.71 (0.8886)  58.98 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (0.0016) (0.0054)   Not rejected*  (0.0001) 

2007 6.1032 2.5241 -6623.24 13250.48 (0.0274)  4.3527 1.8995 0.9216 0.8075 0.2545 0.0873 -6593.65 13199.29 (0.9754)  59.19 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2008 6.2082 2.5122 -6701.89 13407.78 (0.0032)  4.1176 2.0048 1.0428 0.8289 0.2931 0.0881 -6671.73 13355.46 (0.6569)  60.32 

 (<.0001) (<.0001)   Rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (0.0002) 

2009 6.1111 2.4789 -6615.24 13234.49 (0.0149)  3.8505 2.0423 1.1069 0.8493 0.3120 0.0858 -6586.47 13184.94 (0.6144)  57.55 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (0.0001) 

2010 6.1958 2.4821 -6682.65 13369.30 (0.2106)  3.8191 2.0698 1.1482 0.8782 0.3224 0.0946 -6652.11 13316.22 (0.8561)  61.09 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2011 6.2690 2.5358 -6756.89 13517.79 (0.0203)  3.9474 2.0741 1.1194 0.8738 0.3087 0.0905 -6724.04 13460.09 (0.7817)  65.70 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2012 6.3150 2.5448 -6795.72 13595.44 (0.0108)  3.9355 2.0671 1.1511 0.9204 0.3346 0.1047 -6760.12 13532.24 (0.2866)  71.20 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2013 6.3541 2.5790 -6836.84 13677.67 (0.0027)  4.0593 2.0753 1.1058 0.8835 0.3096 0.0943 -6800.73 13613.45 (0.9859)  72.22 

 (<.0001) (<.0001)   Rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2014 6.4151 2.5903 -6888.11 13780.23 (0.0824)  3.9697 2.0955 1.1670 0.9449 0.3549 0.1093 -6846.59 13705.18 (0.7412)  83.05 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2015 6.3842 2.5857 -6862.43 13728.86 (0.0127)  3.9279 2.0970 1.1713 0.9461 0.3578 0.1037 -6820.71 13653.42 (0.2340)  83.44 

  (<.0001) (<.0001)     Not rejected   (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)     Not rejected*   (<.0001) 
P-values are in parentheses. Not rejected* indicates a better fit in the KS test. 

 



Table 4 Estimation of the firm size distribution under lognormal and log-SNP, Finance, Insurance and Real Estate Industries 

Year Panel A lognormal   Panel B log-SNP   Panel C LR 
µ σ logL AIC KS test  µ σ d1 d2 d3 d4 logL AIC KS test  

2004 4.9348 2.2025 -4414.58 8833.15 (0.0561)   4.1876 1.9570 0.3818 0.2061 0.1077 0.0984 -4381.61 8775.22 (0.4603)   65.94 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (0.0011) (<.0001)   Not rejected*  (<.0001) 

2005 5.0986 2.1826 -4510.20 9024.40 (0.0179)  4.3265 1.9581 0.3943 0.1990 0.0990 0.0988 -4475.77 8963.54 (0.3788)  68.86 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (0.0016) (0.0030) (<.0001)   Not rejected*  (<.0001) 

2006 5.2375 2.2216 -4606.95 9217.91 (0.0872)  4.4807 2.0436 0.3703 0.1594 0.0661 0.0923 -4569.33 9150.66 (0.3788)  75.24 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (0.0103) (0.0457) (<.0001)   Not rejected*  (0.0001) 

2007 5.3224 2.2742 -4673.91 9351.82 (0.0017)  4.4390 2.1017 0.4203 0.1738 0.0480 0.0936 -4631.00 9274.00 (0.4184)  85.82 

 (<.0001) (<.0001)   Rejected  (<.0001) (<.0001) (<.0001) (0.0070) (0.1664) (<.0001)   Not rejected*  (<.0001) 

2008 5.3157 2.2614 -4666.27 9336.53 (0.0179)  4.4822 2.0080 0.4151 0.2203 0.0704 0.1056 -4623.26 9258.52 (0.3416)  86.01 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (0.0384) (<.0001)   Not rejected*  (<.0001) 

2009 5.2705 2.3032 -4649.67 9303.34 (0.0481)  4.3158 2.1107 0.4523 0.1977 0.0478 0.1013 -4602.54 9217.07 (0.8284)  94.26 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (0.0019) (0.1714) (<.0001)   Not rejected*  (<.0001) 

2010 5.2595 2.3541 -4656.39 9316.77 (0.0481)  4.3900 2.1587 0.4028 0.1757 0.0391 0.0993 -4608.45 9228.90 (0.4603)  95.88 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (0.0049) (0.2504) (<.0001)   Not rejected*  (<.0001) 

2011 5.2829 2.3531 -4670.56 9345.12 (0.1317)  4.2784 2.1454 0.4682 0.2111 0.0443 0.1078 -4617.88 9247.76 (0.1501)  105.36 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (0.0011) (0.2125) (<.0001)   Not rejected*  (<.0001) 

2012 5.2923 2.3979 -4688.05 9380.10 (0.0072)  4.3261 2.1399 0.4515 0.2297 0.0510 0.1062 -4640.82 9293.64 (0.3788)  94.46 

 (<.0001) (<.0001)   Rejected  (<.0001) (<.0001) (<.0001) (<.0001) (0.1470) (<.0001)   Not rejected*  (<.0001) 

2013 5.3019 2.4297 -4702.08 9408.16 (0.0017)  4.3472 2.1709 0.4398 0.2230 0.0523 0.0989 -4660.23 9332.46 (0.1004)  83.70 

 (<.0001) (<.0001)   Rejected  (<.0001) (<.0001) (<.0001) (0.0011) (0.1352) (<.0001)   Not rejected*  (<.0001) 

2014 5.3788 2.3615 -4732.01 9468.03 (0.1931)  4.4620 2.0670 0.4435 0.2510 0.0766 0.1003 -4699.90 9411.80 (0.5970)  64.23 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (0.0252) (<.0001)   Not rejected*  (<.0001) 

2015 5.4117 2.4111 -4765.25 9534.49 (0.2180)  4.5211 2.2107 0.4028 0.1759 0.0376 0.0759 -4740.59 9493.18 (0.4603)  49.31 

  (<.0001) (<.0001)     Not rejected   (<.0001) (<.0001) (<.0001) (0.0238) (0.2618) (<.0001)     Not rejected*   (<.0001) 
P-values are in parentheses. Not rejected* indicates a better fit in the KS test. 

  



Table 5 Estimation of the firm size distribution under lognormal and log-SNP, Economy-wide 

Year Panel A lognormal   Panel B log-SNP   Panel C LR 
µ σ logL AIC KS test  µ σ d1 d2 d3 d4 logL AIC KS test  

2004 5.3589 2.5722 -18140.36 36284.72 (0.5641)   4.0772 2.0039 0.6396 0.5283 0.1438 0.0797 -18113.55 36239.11 (0.9327)   53.62 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2005 5.5072 2.5439 -18462.70 36929.39 (0.4937)  4.1626 2.0102 0.6689 0.5245 0.1555 0.0738 -18439.89 36891.78 (0.1942)  45.61 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2006 5.6409 2.5371 -18770.48 37544.97 (0.4491)  4.2123 2.0282 0.7044 0.5305 0.1562 0.0705 -18745.70 37503.40 (0.8044)  49.57 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2007 5.7388 2.5396 -19002.83 38009.66 (0.0740)  4.1594 2.0343 0.7764 0.5807 0.1797 0.0837 -18967.08 37946.15 (0.5167)  71.51 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2008 5.7963 2.5334 -19132.03 38268.06 (0.0239)  4.1958 2.0424 0.7836 0.5764 0.1858 0.0830 -19096.15 38204.31 (0.5167)  71.75 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2009 5.7019 2.5199 -18897.95 37799.91 (0.0686)  3.9814 2.0941 0.8216 0.5616 0.1768 0.0751 -18862.74 37737.47 (0.2629)  70.44 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2010 5.7676 2.5449 -19075.26 38154.51 (0.2949)  3.8747 2.1719 0.8715 0.5662 0.1761 0.0714 -19034.35 38080.70 (0.4711)  81.81 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2011 5.8309 2.5992 -19273.51 38551.01 (0.5402)  3.9387 2.1652 0.8739 0.6023 0.1826 0.0797 -19222.03 38456.07 (0.9746)  102.95 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2012 5.8631 2.6176 -19365.85 38735.70 (0.1142)  3.9475 2.1432 0.8938 0.6453 0.2047 0.0904 -19308.43 38628.86 (0.3669)  114.84 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2013 5.8871 2.6442 -19445.94 38895.87 (0.0364)  3.8808 2.1976 0.9130 0.6407 0.2026 0.0815 -19388.47 38788.93 (0.5167)  114.94 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2014 5.9587 2.6022 -19576.70 39157.39 (0.1602)  4.1042 2.0662 0.8976 0.6959 0.2405 0.1001 -19522.27 39056.55 (0.5167)  108.85 

 (<.0001) (<.0001)   Not rejected  (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)   Not rejected*  (<.0001) 

2015 5.9570 2.6027 -19572.92 39149.84 (0.1823)  4.0172 2.1084 0.9200 0.6852 0.2290 0.0886 -19519.64 39051.28 (0.5882)  106.55 

  (<.0001) (<.0001)     Not rejected   (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)     Not rejected*   (<.0001) 
P-values are in parentheses. Not rejected* indicates a better fit in the KS test. 



The results of the estimation show that all of the models sufficiently capture the mean 

and standard deviation of each of the groups of industries; these statistics are represented by 

the location parameters µ and scale parameters s, respectively. As shown, the p-values 

indicate that these parameters are highly significant for both distributions. However, as 

shown in Panel B, for the log-SNP distribution, the !" parameters are also highly significant 

for the majority of the years and industries. Analyzing the Akaike Information Criteria (AIC), 

which penalizes the inclusion of additional parameters for the distributions, it is found that 

this criterion is consistently lower for the log-SNP, which suggests that modeling based on 

this distribution is clearly superior. 

Meanwhile, the LR statistics included in Panel C conclude that for the majority of the 

years and industries selected, the incorporation of the !" parameters improves the LR of the 

model. These results are consistent with the Kolmogorov-Smirnov (KS) test applied to each 

of the distributions. Based on a significance level of 0.01, for the majority of the years and 

across the four groups, the test cannot reject the null hypothesis that the data-generating 

process comes from a theoretical lognormal or log-SNP distribution. However, for all years 

and across each of the industries, the log-SNP distribution shows a better fit. Note that despite 

the differences in the number of firms and economic activity performed by each of the four 

groups selected, the shape of the firm size distributions is similar.  

An example of the quality of fit obtained for each of the industries in the year 2015 

can be observed in Figure 2, which shows, on a logarithmic scale, the relationship between 

the rank and size of sales. As shown through a comparison of empirical values (unfilled dots) 

and values estimated theoretically under the lognormal specification (discontinuous line) and 

log-SNP (solid line), the log-SNP distribution more accurately captures not only the values 

regarding the averages but also the extreme values.4  

 

 

 

																																																													
4 The behavior for the remaining years is similar. 



Figure 2 Logarithm of firm rank vs. logarithm of sales by the firm  

 

 

Figure 2 illustrates how the lognormal distribution overestimates the extreme values 

in the distribution. These results are consistent with those reported in previous research in 

which the lognormal distribution consistently underestimates or overestimates the 

theoretically expected values at the upper tail of the firm size distribution [1] [2]. Table 6 

corroborates these effects for the Manufacturing industry, calculating the empirical and 

estimated upper quantiles under the lognormal and log-SNP for confidence levels of 10%, 



5% and 1%.5 We provide the results for a single industry here, conducting the analysis for 

the remaining industries and obtaining qualitatively similar results.6 

 

Table 6 Value of sales empirically observed versus theoretically expected under lognormal 
and log-SNP 

Year 
Observed Sales value  
(millions, US dollars) 

  Expected Sales value (millions, US dollars) 
 Lognormal  Log-SNP 

10% 5% 1.0%  10% 5% 1.0%  10% 5% 1.0% 

2004 6,134.60  14,356.17  51,974.00   7,030.40  18,952.33  121,772.43   6,014.81  13,237.28  54,958.85  
2005 6,603.66  15,043.38  55,868.84   7,684.46  20,512.97  129,392.69   6,598.52  14,322.48  58,345.11  
2006 7,433.20  18,030.20  60,788.02   8,446.12  22,319.20  138,139.58   7,251.54  15,638.38  63,459.94  
2007 7,750.20  19,133.65  60,310.24   9,224.81  24,328.55  150,016.27   7,887.45  16,788.62  66,459.65  
2008 8,076.61  20,111.00  67,024.26   9,655.94  25,362.41  155,204.98   8,394.62  17,921.06  71,209.05  
2009 7,218.28  17,030.90  65,292.00   8,271.88  21,539.06  129,678.04   7,250.99  15,625.23  63,327.55  
2010 7,856.00  18,692.20  66,107.04   9,338.44  24,464.64  148,982.21   8,011.79  17,432.64  72,667.96  
2011 8,369.81  19,970.51  75,190.16   11,240.25  30,330.24  195,230.32   8,991.23  19,557.65  81,846.26  
2012 8,673.40  20,145.28  75,039.96   11,744.70  31,764.51  205,347.60   9,282.22  19,935.42  81,395.02  
2013 8,772.35  20,860.57  78,253.70   12,218.77  33,222.39  216,919.80   9,454.11  20,367.08  84,142.50  
2014 9,512.72  20,191.80  78,041.34   12,097.21  32,089.90  200,043.57   9,406.80  19,227.65  71,621.03  
2015 9,330.04  20,170.31  68,975.52    11,859.39  31,285.45  193,014.95    9,175.00  18,691.47  69,169.41  

 

Analyzing the tendency of the values at the upper tail of the distribution for sales 

during the period studied, it is observed that the flexible parametric structure of the log-SNP 

distribution allows for a better fit of the expected values. The interpretation of the values 

from this table highlights the errors induced in the estimation of the firm size distribution by 

the use of traditional parametric distributions such as the lognormal.  

3.3. The log-SNP bivariate distribution: Sales vs. assets  

Firm size can be measured by different variables: sales, assets, employees, or benefits, 

among others [34] [35] [7]. This diversity of measures suggests that there is no single best 

indicator of size and that the selection primarily depends on the available data [36]. To shed 

light on the robustness of the results obtained above, we take the size of the value of the total 

																																																													
5 To obtain the quantiles of the log-SNP distribution, we use the CDF presented in equation (3) and the inverse 
transform method (ITM).  
6 The results for the other industries are available upon request.  



assets of firms in Manufacturing as an additional measure. Table 7 shows the descriptive 

statistics for this variable during the entire period studied. 

 

Table 7 Descriptive statistics, total assets 

Industry Statistic 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Manufacturing 
(N=947) 

Min x106  0.145  0.174  0.153  0.050  0.050  0.030  0.034  0.023  0.029  0.020  0.005  0.010  
Mean x109 4.26  4.35  4.77  5.20  5.11  5.35  5.71  6.03  6.32  6.61  6.78  6.94  
Max x109 750.33  673.34  697.24  795.34  797.77  781.82  751.22  717.24  685.33  656.29  645.81  508.14  
St.Dev x1010 2.85  2.64  2.79  3.10  3.03  3.07  3.07  3.07  3.05  3.06  3.07  2.88  
Skewness 20.73  19.10  18.20  19.26  20.12  18.63  17.08  15.62  14.44  13.35  12.92  10.18  
Kurtosis 512.32  449.59  415.24  459.05  499.00  440.85  379.15  323.04  280.09  240.54  225.10  135.90  

 

As shown in the table, the firm size distribution measured based on the variable of 

assets shows positive asymmetry, with the presence of a very high quantity of small firms 

and a low number of large firms. The shape of the distribution suggested by these statistics 

is consistent with that observed using the sales variable. However, the kurtosis also shows 

that the upper tail of the distribution is even thicker than that exhibited for the sales variable. 

Table 8 provides an example of the results of the estimation of the joint distribution 

of the value of assets and of sales for firms in the years 2008 and 2009. These years are 

relevant because, as observed in Tables 1 and 7, they mark a break in the tendency of the 

moments of distribution due to the global financial crisis. Specifically, using ML, we estimate 

the parameters of the bivariate case of the densities of the lognormal and log-SNP 

distributions described in the above sections. We implement the estimation in a sequential 

manner, beginning with the simplest univariate density, the lognormal, and recursively add 

the parameters whose results served as initial values.  

Regarding the results, Panel A of the table gathers the estimated parameters for the 

lognormal distribution, and Panel B displays the estimated parameters for the log-SNP 

distribution. As shown, we only estimate the parameters !#$ and !%$ (i = 1 assets, i = 2 sales), 

reinforcing the fact that the densities must be expanded to higher polynomials to capture the 

probabilistic mass at the extreme end of the tails. Note that for both distributions, all 

parameters are significant.  

 



Table 8 Estimation of the assets-sales bivariate case  

		 Panel A lognormal   Panel B log-SNP 
  2008 2009  2008 2009 
µ1 5.8310 5.7997   5.2752 5.6858 

 (<.0001) (<.0001)  (<.0001) (<.0001) 
σ1 2.5085 2.5385  3.3442 2.8759 

 (<.0001) (<.0001)  (<.0001) (<.0001) 
d31    -2.1829 0.4319 

    (<.0001) (<.0001) 
d41    1.3327 0.4059 

    (<.0001) (<.0001) 
µ2 5.7685 5.6448  5.3791 5.6201 

 (<.0001) (<.0001)  (<.0001) (<.0001) 
σ2 2.6589 2.6342  3.1727 2.8036 

 (<.0001) (<.0001)  (<.0001) (<.0001) 
d32    2.3255 0.5729 

    (<.0001) (<.0001) 
d42    -0.1443 -0.1569 

    (0.0210) (<.0001) 
ρ 0.9539 0.9547  0.9890 0.9871 

 (<.0001) (<.0001)  (<.0001) (<.0001) 
logL -3343.27 -3339.48  -2832.68 -2983.98 
BIC 3360.41 3356.61   2863.52 3014.82 

P-values are in parentheses. 

Regarding the estimated correlation, & is also significant, and although this parameter 

does not exactly capture the correlation between the two variables, a very high dependency 

between them is observed. Comparing the Bayesian Information Criterion (BIC), which 

penalizes the inclusion of additional parameters, for the two distributions, it is found that this 

criterion is consistently lower for the bivariate log-SNP distribution. This finding suggests 

that as in the univariate case, the model based on this distribution is clearly superior. 

Additionally, we performed the Wald test to analyze the relationship between the 

estimated parameters in the log-SNP distribution. The results obtained are found in Table 9. 

Note that, in general, for the two years selected, the null hypothesis of equal values of the 

counterpart coefficients in both marginals is rejected, which indicates that, although the series 

are highly correlated, significant differences regarding the behavior of the extreme values 

can be found. However, for 2009, the difference between the !#$ parameters is significantly 

equal to zero. 



Table 9 Wald test, log-SNP distribution 

  2008 2009 
µ1-µ2 -0.1039 (<.0001) 0.0657 (<.0001) 
σ1-σ2 0.1714 (<.0001) 0.0723 (<.0001) 

d31-d32 -4.5084 (<.0001) 0.1411 (0.2110) 
d41-d42 1.4770 (<.0001) 0.5628 (<.0001) 

Chi Sq(4) 5049.63 (<.0001) 203.42 (<.0001) 
P-values are in parentheses. 

 

As shown in Figure 3, in 2009, the value of the assets measured in logarithms became 

more symmetrical with respect to the previous year, which also resulted in a minor difference 

between the location parameters '$ and the scale parameters ($. According to Pascoal et al. 

[22], a possible explanation for this behavior is that assets act as a survival mechanism in 

times of economic instability. Additionally, a reduction in sales in addition to large fixed 

costs can lead to heavy losses that immediately result in a reduction in assets (which can act 

as a safety net in adverse economic situations), which can lead to new sales losses. As a 

result, this behavior can also imply a reduction in the difference between large and small firm 

sizes. In this manner, the value of sales appears to be a better firm size measure compared to 

other measures, as indicated in the literature [37] [22]. 

 

Figure 3 Empirical density of the logarithm of assets  

 



These effects can also be observed in Figure 4, which shows the histogram of the joint 

distribution of the values of assets and of sales for firms during the year 2009. Normally, 

firms with low sales values have low asset values (and vice versa); however, some firms may 

have high sales values in addition to asset values that, comparatively, are relatively lower. 

	

Figure 4 Histogram of the assets-sales joint distribution  

 

 

4. Conclusions 

We propose a new methodology based on the log-SNP distribution for modeling the 

firm size distribution. This distribution nests the lognormal, including new parameters that 

are capable of better capturing the behavior of the upper tail of the firm sizes, which makes 

it possible to contrast the deficiencies of the lognormal distribution in this direction. In the 

empirical application we compare the performance of both distributions, adjusting a sample 

of US firms in the 2004-2015 period. 

The results show that the lognormal distribution tends to consistently overestimate 

the expected values at the upper tail of the distribution. This finding raises the need to propose 

other flexible distributions that allow for the gathering of more reliable information regarding 

the level of industrial concentration and economic cycles and, therefore, the implementation 

of competition policies. Taking different aggregation levels by economic activity, our study 



shows that the log-SNP provides a better fit for the distribution of firm sizes. Meanwhile, it 

is more flexible than the lognormal when the data are very skewed and there are possible 

jumps in the upper tail due to the extreme observations.  

We are also the first to develop an expression for the density of the multivariate log-

SNP distribution and to analyze the estimation of the distribution together with the value of 

the assets and sales of the firms. This distribution nests the multivariate lognormal and has 

marginal log-SNP densities, which facilitates the estimation procedures. The results suggest 

that sales are a better firm size measure, as has been determined in previous studies. Despite 

the high correlation between the value of a firm’s assets and sales, in periods of financial 

crisis, assets can act as a safety net for survival in the face of economic instability. This fact 

could lead to distorted conclusions in the analysis of the behavior of the distribution of firm 

sizes based on this variable. 
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