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Abstract 

Grinding is a very important industrial operation that draws up to 4% of the global electricity consumption. 

It is imperative to predict accurately the appropriate retention times necessary for a given size reduction to 

minimize the wasted energy invested in overgrinding. However, the most common models for scaling, such as 

Bond, could lead to a design risk on the order of ± 20% due to their assumption that a single particle size can 

describe the entire particle size distribution. Thus, different approaches (both phenomenological and non- 

phenomenological) need to be explored. 

In the present work, a population balance model is compared with an algebraic statistical model, to predict 

the evolution of particle size distribution over time, assessing them in terms of accuracy, robustness, and 

computational complexity. Even though the population balance model had a lower accuracy and higher 

mathematical complexity its predictions were physically coherent, which made it a more robust model for 

extrapolating to different initial conditions and milling times. It is important to note that due to the 2020 COVID-

19 pandemic, experimental information was limited, which inhibited an independent validation of the models, 

and an overfitting analysis for the ANPM. 

1. Introduction  

Grinding of solid particles is an important process found in a large number of industries, such as cement, 

mining, chemicals and foods [1]. Comminution draws up to 4% of the global electrical energy [2] which could 

be in part explained by its low efficiency, as it is estimated that only 1% of the total energy input to the grinding 

system is directly responsible of the size reduction of the particles [1].  

Reducing the size of solid materials is an operation difficult to describe quantitatively due to the inherent 

complexity of grinding processes [3], for this reason it is usual to find simplified expressions (e.g. laws of Kick, 

Rittinger and Bond) that only relate one size range parameter  of the material being crushed for calculating the 

energy needed to increase the surface area of the material [4], [5]. However, these expressions ignore the 

different subprocesses (i.e. breakage kinetics, transport of material through the mill, size classification) that 

make up a grinding circuit, and could lead to a design risk on the order of ± 20%, meaning that the specific 

power would require an oversizing of 20% for trustworthy results, affecting both the capital and the operation 

cost for the process equipment [6]. 

Therefore, more complex grinding size-energy models are required to provide accurate and cost-saving 

results. For instance, learning the kinetic behavior of the grinding process would provide appropriate retention 

times in which the particle size will be satisfactorily reduced, which not only minimizes energy consumption 

but also avoids overgrinding valuable solids [7].  

For these purposes different alternatives have been proposed, one of the most important is to treat size 

reduction phenomena as processes analogous to irreversible chemical reactions. In this approach, larger particles 
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(reactants) can break into smaller ones (products) [8], formulating kinetic models based on population balances, 

that is, on mass balances for each particle size, depending on grinding time [8], [9]. 

Several studies have been carried out to evaluate the predictive capacity of population balance models 

(PBM), Kotake et al. [10] studied the effects on the grinding rate constant with respect to variations in the  

particle size distribution (PSD) of the feed and the diameter of the mill balls. The authors developed 

mathematical expressions that explain their experimental behavior. Similarly, Gupta [11] also verified the 

significant effect of the PSD on the specific breakage rate of the particles, finding that the latter varies with the 

type of material, displaying a greater effect in the case of softer materials and thicker particles. In a subsequent 

work, Gupta presented a detailed study of the variations in the production rate of a ball mill with generation of 

fine particles [12], which provides relevant information for improving the scaling of production systems.  

A number of different robust models have been developed in order to predict the product size of a ball mill 

in batch operation, for example, Tavares et al. [13] formulated a model that considers the distribution of stressing 

energies in the mill and the distribution of fracture energies of particles contained, which allowed to explore  

the orders of breakage in more detail. Capece et al. [14] went beyond the phenomenology considered by classical 

PBM and derived a breakage model that takes into account interparticle interactions, using discrete element 

method simulations of a grinding ball impacting a confined particle bed; further investigation in this model 

could improve control and design of grinding processes.  

An algebraic, non-phenomenological model (ANPM) is generally used when models based on principles are 

either unavailable or too difficult to implement. In the case of grinding of solid particles, where time profiles 

are required, the model must consider time variations. An example of this is the design of dynamic experiments, 

a recently developed methodology that is based on the classical approach of design of experiments and allows 

considering time-variant batch systems [15]–[17], however, due to the lack of dynamic variables in this specific 

process, the design of dynamic experiments cannot be applied to a simple grinding process. 

The present work is focused on assessing the accuracy, robustness, and complexity of both PBM and an 

ANPM for predicting the PSD of clay brick processed in a batch ball mill as function of the initial PSD and 

grinding time. This might aid also in the understanding of the material breakage mechanism as well as its kinetic 

behavior. In order to achieve the aforementioned, this research aims to perform a comparison of the predictive 

capabilities of an ANPM and a PBM in terms of the mean absolute error (MAE) and maximum absolute error 

(MAX), while robustness comparison was performed with three hypothetic simulated scenarios. Finally, 

computational complexity was evaluated qualitatively analyzing the equations that make up each model and the 

methods involved in their resolution. 

2. Materials and methods 

In order to study the predictive capability of PBMs against an ANPM, a clay brick was initially ground until 

all particles could fit through a 1½ 𝑖𝑛 mesh (all used sieves were in the scale according to ASME E11 [18]). 

Afterwards, the material was characterized with a sieve set of meshes No. 5, No .10,  A clay brick was initially 

ground and sieved using a set of meshes 1½ 𝑖𝑛, No. 5, No. 10 and the collector pan. The material retained in 

the two middle sieves was utilized for the grinding experiments. Two experiments1 of grinding and sieving were 

performed, which consisted in the evaluation of the PSD at different geometric succession milling times [6] 

(1.0, 2.0, 4.0, 8.0, 16.0 and 32.0 minutes). For each run, the rotational speed was constant at 109 rpm, while 

fractional ball filling and fractional material filling (calculated with the packed density) was 2.3% and 2.9%, 

respectively.  

The mill was filled with alumina balls with the following properties: 

  

 
1 It was not possible to perform any additional experiments due to the shutdown of the research facilities during 

the 2020 COVID-19 sanitary emergency. 
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Table 1. Properties of grinding media 

Number of balls 30 

Average mass [g/ball] 34.51 

Average packed density [g/cm3] 8.96 

Average volume [cm3/ball] 3.85 

Average diameter [cm] 2.97 

Standard deviation of the diameter [cm] 0.24 

 

A ceramic batch ball mill with 19 cm of diameter and length of 17.5 cm and sieve numbers of No. 5, No. 10, 

No. 35, and No. 60 was used for achieving the previous purpose. In order to have three differentiated groups of 

particle sizes, the mass remaining on sieve No. 5 will be referred to as M1, the retained in sieves No. 10, No. 

35 and No. 60 will be grouped and called M2, and what is left in the collector will be labeled as M3. 

Parametrization of each model was performed based on the experimental data. Below is a brief description 

of each model and its adjustment algorithm: 

 

- PBM consists on mass balances for each size range 𝑖 at time 𝑡, which is expressed mathematically as 

[19]: 

 

𝑑𝑚𝑖(𝑡)

𝑑𝑡
= −𝑘𝑖 ∗ [𝑚𝑖(𝑡)]𝛼 + ∑ 𝑏𝑖𝑗 ∗ 𝑘𝑗 ∗

𝑖−1

𝑗=1

[𝑚𝑗(𝑡)]
𝛽

     (1) 

 

In (1) 𝑚𝑖 is the mass fraction of 𝑖, 𝑘𝑖 is the function of the breakage rate of 𝑖,  𝑏𝑖𝑗  is the breakage 

distribution function which is defined as the proportion of size range 𝑖 that is transformed into size range 

𝑗, finally 𝛼 and 𝛽 correspond to the reaction orders, in the same way as in a chemical system. 

For each size range 𝑖 there is a differential equation like (1), so each grinding and sieving  run has an 

algebraic-differential system that was solved numerically with the data set of all the runs, based on the 

Runge-Kutta-Fehlberg numerical method and minimizing the MAX between the predicted and the 

experimental value. This was performed using the solver tool in Microsoft Excel. 

 

- ANPM: The authors developed an ANPM, based on the classic design of experiments, which is 

described by the equation below:  

 

𝑥𝑖,𝑡 = 𝑏𝑜 + 𝑏𝑖 ∗ 𝑥𝑖,0 + 𝑏𝑡 ∗ 𝑡 + 𝑏𝑖𝑖 ∗ 𝑥𝑖,0
2 + 𝑏𝑡𝑡 ∗ 𝑡2 + 𝑏𝑖𝑡 ∗ 𝑥𝑖,0 ∗ 𝑡     (2) 

 

Where  𝑏𝑜, 𝑏𝑖, 𝑏𝑖𝑖 , 𝑏𝑡𝑡 and 𝑏𝑖𝑡  are the regression coefficients that are obtained by the method of 

ordinary least squares, where 𝑥𝑖,𝑡 is the mass fraction of size range 𝑖, in a grinding time 𝑡 and 𝑥𝑖,0 is the 

initial mass fraction of the size fraction 𝑖. Both 𝑥𝑖,0 and 𝑡 are in coded form, that is, between -1 and +1. 

Equation 2 was applied to M1 and M3, while the values of M2 were calculated with mass balances. 

 

After adjusting the models to the experimental data, they were compared based on their accuracy, robustness, 

and computational complexity. Accuracy was represented by MAE and MAX, robustness was analyzed with 

three hypothetic simulated scenarios, while computational complexity was evaluated qualitatively analyzing the 

equations that make up each model and the methods required for solving them.  
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3. Results and analysis 

3.1. Experimental data 

The two grinding experiments were performed according to the description above. Figure 1 contains the 

profiles depicting the evolution of PSD over time.  

 

Figure 1. Experimental mass fractions retained in M1, M2, M3, opened symbols are used for experiment 1 (Exp1) and closed are for 

experiment 2 (Exp2). Inset corresponds to a zoomed in view of the dashed region of the left figure. 

Most of the initial feed material corresponded to the coarsest particle size (M1), and the constant decrease 

that it presents in both runs can be explained by two factors; first, because bigger particles have a higher chance 

to collide and generate smaller particles, and second, since there is no coarser material, no new M1 material is 

generated. Also, M2 did not show material accumulation, which could suggest that abrasion is the most 

dominant breakage mechanism, where big particles produce several small particles and another big particle. 

According to Little et al. [20] abrasion is generally triggered by two phenomena: localized low intensity surface 

stresses or repeated low energy contacts, both could be happening inside the mill. The previously statement 

seems to agree with experimental observations, during the experimental runs edges in particles of M1 were 

worn out after each milling, which could explain the rapid generation of M3, especially in the early phases of 

the process. 

3.2. Fitted models and accuracy 

3.2.1. PBM 

 

The equation 3, 4 and 5 embody the PBM for the three differentiated size ranges, where 𝑀𝑎, 𝑀𝑏 and 𝑀𝑐 are 

the mass fractions of M1, M2 and M3, respectively. 

 

 

 

 

 

 

 

 

 

𝑑𝑀𝑎

𝑑𝑡
= −𝑘1𝑀𝑎𝛿  

(3) 

𝑑𝑀𝑏

𝑑𝑡
= −𝑘2𝑀𝑏𝜔 + 𝑘1𝑏21𝑀𝑎𝛿 

(4) 

𝑑𝑀𝑐

𝑑𝑡
= 𝑘1𝑏31𝑀𝑎𝛿 + 𝑘2𝑏32𝑀𝑏𝜔 

(5) 
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After the fitting process, the authors obtained several solutions that minimized the MAX, so it was selected 

the one with the lowest Akaike information criterion (51.33). The MAE that corresponds to this model is 0.013 

and the MAX is 0.049, both in terms of mass fraction. The parameters’ values are shown in Table 2 

 
Table 2. Constants of the selected PBM 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is noteworthy that the kinetic orders previously shown are both equal to 1. This means that the breakage 

follows an exponential kinetic relation. Also, from the previous results it is possible to estimate that 67% of the 

clay of size M1 breaks into M2, while 33% of the former turns into M3 sized material. 

One of the advantages of PBM as a phenomenological model is that it lets conclude certain behaviors in the 

process. Evidence of this is shown in Table 2, where the  𝑘𝑖𝑏𝑖𝑗 constants represent the rates in which the material 

breaks from one specific size (𝑗) range to another (𝑖). This concept is simplified in Figure 2. From these values 

it is possible to analyze how the rate in which M1 transforms into M2 (0.003/min) is higher than the rate in 

which M1 turn into M3 (0.002/min). At the same time, the rate in which M1 turns into M3 is lower than the 

one M2 turns into M3 (0.200/min). 

 

 

Figure 2. Depiction of the rates in which the material breaks from one specific size range to another 

 

𝑘1 [1/min] 0.005 

𝑘2 [1/min] 0.200 

𝑏21 2/3 

𝑏31 1/3 

𝑏32 1.0 

𝛿 1.0 

𝜔 1.0 

𝑘1𝑏21[1/min] 0.003 

𝑘1𝑏31[1/min] 0.002 

 𝑘2𝑏32[1/min] 0.200 
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Figure 3 illustrates the comparison of the values of mass fractions observed in the experiments and the 

ones predicted by the fitted model. 

Figure 3. Mass fractions retained experimentally and predicted with PBM for:M1, M2 and M3. Opened symbols are used for experiment 

1 (Exp1) and closed are for experiment 2 (Exp2). Thick dashed lines correspond to the prediction of experiment 1 (Pre 1), while thin 

dashed lines correspond to the prediction of experiment 2 (Pre 2). Inset shows a zoomed in view of the dashed region of the left figure. 

In order to have a deeper understanding of the model, its residuals were analyzed in terms of 

homoscedasticity and expected value. PBM’s residuals did not follow a normal distribution, this was inferred 

with Shapiro-Wilk test (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.02252), so the expected value could not be calculated using a typical 

confidence interval for the mean. Based on the previously stated, the authors implemented a non-parametric 

method based on the Bootstrap sampling [21] in order to estimate with a 95% confidence an interval for the 

median, which resulted in (−0.0018 𝑡𝑜 0.0061). It must be noted that as zero is contained in the interval, it is 

not possible to reject that the residuals’ expected value is not zero 

The second criterion was the homoscedasticity of the residuals. Since the PBM is not a linear regression and 

its residuals do not follow a normal distribution, 𝐹 − 𝑡𝑒𝑠𝑡 nor Breusch-Pagan can be utilized. Therefore, the 

vastly robust and non-parametric, Fligner-Killeen [22], [23] test was applied, allowing to conclude that there 

are significant differences (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.02575) between the variance residuals of the first and second 

experiments; in other words the model is heteroscedastic. Still, it is important to keep in mind that 

homoscedasticity is not a requirement for PBM, as it is not a linear regression based model. 

 

3.2.2. ANPM 

 

After verifying statistical significance of each term, the models that resulted are the depicted below: 

 

𝑥𝑀1,𝑡 = 0.424 + 0.571 ∗ 𝑥𝑀1,0 − 0.026 ∗ 𝑡 + 0.009 ∗ 𝑡2 + 0.032 ∗ 𝑥𝑀1,0 ∗ 𝑡 (6) 

𝑥𝑀3,𝑡 = 0.694 + 0.696 ∗ 𝑥𝑀3,0 − 0.019 ∗ 𝑡 (7) 

𝑥𝑀2,𝑡 = 1 − 𝑥𝑀3,𝑡 − 𝑥𝑀1,𝑡 (8) 

 

 

The model’s MAE is 0.004 and the MAX is 0.016, both in terms of mass fraction, from which it is possible 

to observe that both measures are lower in the ANPM than in the PBM. 
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Figure 4 shows the graphic comparison between the experimental results and the predictions for each of the 

size ranges. It could be noted that this model fits better that PBM, which can be asserted as, it not only follows 

the curve more smoothly, but also it reaches the last experimental point in all cases.  

Figure 4. Mass fractions retained experimentally and predicted with ANPM for:M1, M2 and M3. Opened symbols are used for 

experiment 1 (Exp1) and closed are for experiment 2 (Exp2). Thick dashed lines correspond to the prediction of experiment 1 (Pre 1), while 

thin dashed lines correspond to the prediction of experiment 2 (Pre 2). Inset shows a zoomed in view of the dashed region of the left figure. 

 

Residuals analysis was also performed for ANPM, and it was possible to conclude that for both the equation 

6 and 7, the residuals followed a normal distribution, since the Shapiro-Wilk test’s null hypothesis was not 

rejected for any of the cases (𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 were 0.538 and 0.902, respectively). Due to the previous, the 

expected value of the residuals could be estimated with 95% confidence an interval for the mean, resulting in 

(−0.005 𝑡𝑜 0.005). Analogous to PBM, zero is contained in the mean interval, so it is not possible to reject 

that the residuals’ expected value is not zero. Homoscedasticity was not discarded by the Breusch-Pagan test, 

with 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 of 0.582 for equation 6, and 0.223 for equation 7. The previous is a good result as 

homoscedasticity is a requirement for linear models adjusted with ordinary least squares. 

3.3. Robustness analysis 

In order to perform the robustness comparison, three hypothetic scenarios were simulated with the two 

models. The initial PSDs are presented in Table 3. They are different from the experimental conditions and the 

milling time was extrapolated up to 128 minutes, which is four times longer than the final experimental time. 

Figure 5 depicts the PSD evolution plots for these three hypothetic scenarios for both models.  

Table 3. Initial PSD for tor the three scenarios 

Scenario 
Initial PSD 

M1 M2 M3 

1 85% 4% 12% 

2 65% 31% 4% 

3 62% 4% 35% 
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Figure 5. PSD evolutions for the three cases and both models, where a) is Scenario 1, b) is Scenario 2 and c) corresponds to Scenario 

3. PBM and ANPM are represented by dotted and dashed lines, respectively. 

 

It can be noted that while PBM respects mass conservation principle, ANPM fails to maintain physical 

coherence, as it predicts mass fractions below zero and over one, this is shown in Figure 6, which displays the 

complete ANPM simulation results. Although the statistical model was more accurate for fitting the 
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experimental data than the phenomenological one, it is not a reliable model for predicting new conditions 

outside the initial experimental range. 

 

 

Figure 6. Complete PSD evolutions for the three cases simulated with ANPM, where a) is Scenario 1, b) is Scenario 2 and c) 

corresponds to Scenario 3. 

 

ANPM tends to predict quicker increases in M3 and quicker decreases of M1, in comparison to PBM. Also, 

the higher the initial M3 mass fraction is, the faster the ANPM will predict incoherent mass fractions. On the 

other hand, PBM is a phenomenological model, and for that reason its predictions respect the physical 

principles, which make it a more robust model for extrapolating to different initial conditions and milling times. 
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3.4. Computational complexity  

To analyze the computational complexity of each model it is important to notice that to adjust the PBM of 

this study, a system of three differential equations with seven parameters had to be solved, and in order to 

perform this, a numerical method had to be employed, tandem a minimization of the maximum error. In contrast 

ANPM only needs to adjust two algebraic equations with 12 parameters, applying ordinary least squares 

method, which is quite simpler.  

It is important to state that during the search of a better model, the parameters of ANPM to be fitted was 

reduced to eight, while PBM’s parameters were reduced to two, which means that PBM has more degrees of 

freedom than ANPM.  

 

4. Conclusions 

From the accuracy analysis it was concluded that ANPM fitted better to the experimental data, with a MAE 

of 0.004 and a MAX of 0.016, as opposed to PBM, from which resulted a slightly higher MAE and MAX of 

0.013 and 0.049, respectively. This can be expected due to the fact of PBM having more degrees of freedom 

than ANPM. Nevertheless, this apparent higher accuracy did not guaranteed consistency when the models were 

used to predict from extrapolated initial conditions and milling times, where PBM, as a phenomenological 

model outputted physically coherent results, while ANPM predicted mass fractions below zero and over one. 

This reinforces the need of validation through independent scenarios when comparing phenomenological and 

non-phenomenological models. 

The previously stated allows to conclude that although the statistical model was more accurate for fitting the 

experimental data than the phenomenological one, it is not a reliable model for predicting new conditions 

outside the initial experimental range. 

Another important conclusion is that the experimental data suggested that abrasion was the main breakage 

mechanism. On the other hand, due to the phenomenological nature of PBM it was possible to calculate the 

rates in which the material breaks for each of the size ranges, wherein the rate in which M1 transformed into 

M2 (0.003/min) is higher than the rate in which the former turned into M3 (0.002/min). At the same time, the 

rate in which M2 turned into M3 (0.200/min) is higher than the one where M1 transformed into M3. 
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