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Introduction

We propose a Bayesian simultaneous equations system with spatial random effects suited

to handling spatial dependence and heterogeneity, endogeneity, and statistical inference as-

sociated with complicated non-linear functions of the parameter estimates. In particular,

we define a system of simultaneous equations where a conditional correlation between the

stochastic errors captures the endogeneity, and instrumental variables are used to model the

endogenous variables. In addition, we employ a Bayesian hierarchical spatial framework,

based on a Conditional Autoregressive (CAR) spatial prior, to structure the unobserved het-

erogeneity and the spatial dependence. After model specification, we find the conditional

posterior distributions of all the parameter sets, thus we can use Gibbs sampling algorithms

to draw simulations of all our posterior distributions.

We perform a limited Monte Carlo simulation exercise where we find that our proposal

obtains good outcomes regarding point estimation compared with competing alternatives. In

addition, prediction is substantially improved introducing spatial effects.

Establishing a Bayesian approach allows performing statistical inference related to func-

tions of the parameter estimates using simple rules of probability theory.

Thus, we apply our methodology to evaluate the welfare implications for poor households,

measured through the Equivalent Variation, caused by the electricity price changes which took

place in the province of Antioquia (Colombia), after Empresas Públicas de Medelĺın (EPM)

acquired Empresa Antioqueña de Enerǵıa (EADE) in 2006. The Equivalent Variation is a

non-linear function of parameter estimates of a demand function, which we estimate using

data at the municipality level. Therefore, in our empirical exercise, we should take into con-

sideration spatial effects, endogeneity between price and electricity demand, and unobserved

heterogeneity due to latent economical, cultural and geographical factors. Finally, we want to

perform statistical inference regarding the Equivalent Variation. This application is interest-

ing in itself because electricity services represent a significant share of households’ budgets,
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and this fact is prominent for the poor population (Gomez-Lobo, 1996, You and Lim, 2013).

As a consequence, small variations in electricity prices may have relevant impacts on the

welfare of households.

Consideration of spatial effects while performing statistical inference based on cross-

sectional areal data has a long tradition in spatial statistics (Cressie, 1993, Ripley, 2005),

and more recently in spatial econometrics (Anselin, 1988). Most of the methods in spatial

econometrics have being based on the frequentist approach, although there are some remark-

able exceptions founded on the Bayesian framework (LeSage, 1997, 2000, Parent and LeSage,

2008, LeSage and Pace, 2009, LeSage and Llano, 2013).

The issue of endogeneity emerges naturally due to the presence of the spatial lag of the de-

pendent variable in Spatial Autoregressive (SAR) models, and spatial econometric estimators

have taken this problem into consideration since its beginning (Anselin, 1990, Kelejian and

Prucha, 1998, 1999). However, the treatment of endogeneity due to other regressors has only

recently been analyzed (Rey and Boarnet, 2004, Kelejian and Prucha, 2004, Fingleton and

Le Gallo, 2008, Drukker et al., 2013, Liu and Lee, 2013). Thus, these new kind of spatial esti-

mators take into consideration spatial dependence and feedback endogeneity simultaneously.

However, they fail to take into account unobserved heterogeneity, and have to rely on asymp-

totic methods, like the Delta method, to perform statistical inference regarding complicated

non-linear functions of the parameter estimates.

Unobserved heterogeneity is another issue that may arise with cross-sectional areal data

(Parent and LeSage, 2008). Unfortunately, to the best of our knowledge, there is only limited

spatial econometric literature regarding this issue. This fact may be due to the difficulty of

introducing unobserved heterogeneity in cross-sectional areal data using frequentist methods.

However, LeSage (2000), Smith and LeSage (2004), LeSage et al. (2007), Parent and LeSage

(2008), Seya et al. (2012) and LeSage and Llano (2013) have tackled unobserved heterogeneity

using a Bayesian approach, simultaneously including spatial effects and unobserved hetero-

geneity, but they do not take into consideration recursive endogeneity: an issue that has been

considered from a Bayesian perspective in Drèze (1976), Kleibergen and Van Dijk (1998),
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Zellner (1998), Kleibergen and Zivot (2003).

To the best of our knowledge, we find that few authors have studied welfare effects due

to changes within block price systems, and even fewer have introduced spatial random effects

within an endogenous framework to analyze these welfare implications. From a microeco-

nomic perspective, there are three main streams: consumer surplus (Acton and Mitchell,

1983, Bowitz et al., 2000), compensating variation (Gomez-Lobo, 1996, Dodonov et al., 2004)

and equivalent variation (Dodonov et al., 2004, Lundgren, 2009, Ruijs, 2009, You and Lim,

2013), all of them have been estimated using frequentist approaches without consideration of

uncertainty due to parameter estimates. From a theoretical standpoint, the main considera-

tion for adopting the Bayesian approach is that it allows us to establish a statistical framework

that simultaneously unifies decision theory, statistical inference, and probability theory under

a single philosophically and mathematically consistent structure. From an empirical perspec-

tive, the Bayesian approach has some advantages in the present setting compared with the

frequentist framework. In particular, we can easily make statistical inferences associated with

the Equivalent Variation, which is a complicated function of the parameter estimates, using

simple rules of probability theory, which could prove difficult with a frequentist statistical ap-

proach. In addition, our econometric approach takes into account the endogeneity issue that

is present, where the Bayesian paradigm is less affected by the presence of weak instruments,

allowing us to identify the structural parameters from the reduced form in our empirical ex-

ercise. The frequentist procedures, however, deal with more severe identification problems

in the presence of weak instruments. Finally, a Bayesian framework permits us to introduce

spatial random effects in our cross-sectional areal data structure, and control the unobserved

heterogeneity and autocorrelation that can arise in spatial settings. On the other hand, a

frequentist approach does not allow us to easily take this phenomenon into account.

Using data at the municipality level for the province of Antioquia, and different spatial

contiguity criteria, we find that the posterior mean of the price, income, substitute and urban-

ization rate demand elasticities are −0.88, 0.30, 0.12 and 0.57, respectively. In addition, the

posterior mean of the semi-elasticity of electricity demand associated with a sea level dummy,
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which is equal to one when the municipality is located less than 1000 meters above sea level,

and zero otherwise, is approximately 0.14. With these estimates as inputs, we calculate the

posterior distribution of the Equivalent Variation welfare measure as a share of income for

each municipality. We deduce this measure using a logarithmic demand function, and taking

into account a budget constraint for a two-tiered pricing scheme. We find that the average

household enjoys a mean welfare gain of approximately 0.87% of their initial income, which

can be considerable when taking their socioeconomic situation into account. However, these

results depend heavily on whether the municipalities are part of the Metropolitan Area or

not, on their average electricity consumption levels, and on other geographical and economic

factors. For example, Medelĺın, the capital of the province, and its main center of economic

activity, presented a mean welfare gain equal to 0.14%, which is approximately equal to the

average improvement for all Metropolitan Area municipalities. On the other hand, munici-

palities located outside of the Metropolitan Area had, in total, mean welfare gains equal to

0.94%. In particular, 11 of the less urban municipalities, which are also the poorest, had wel-

fare gains above 2% of their initial income. Just to serve as a reference, low income households

in Colombia expend on average 1.13%, 2.04%, and 4.79% of their income on pension, health

care, and education, respectively (DANE, 2015). This illustrates how important are the wel-

fare implications of utility regulation: price changes in this sector may have huge effects on

households’ welfare, especially for the poorest.

The remainder of this paper is organized as follows. Section 1 outlines the complete

endogenous Bayesian modeling strategy, the likelihood formulation, our prior specification,

the deduction of the conditional posterior densities, as well as the results of our simulation

exercises. Section 2 addresses the generalities of the Colombian energy market that are fun-

damental to the understanding of our application. Section 3 deals with the microeconomic

foundation of the Equivalent Variation welfare measure, its ties to the econometric specifica-

tion of the system of equations, and derives the measure for the specific case of a logarithmic

demand function taking into consideration a budget constraint for a two-tiered pricing scheme.

Section 4 is divided into four subsections. The first presents summary statistics for the data
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used in the econometric exercise. The second presents the specific characteristics of our econo-

metric specification for the application. The third presents a summary of the results of our

demand equation estimation, with some robustness checks regarding the spatial structure.

The fourth presents the main findings for our application: the analysis of the posterior dis-

tribution of the welfare effects and its geographical patterns. Finally, Section 5 presents our

conclusions.

1 Econometric Approach

We propose an endogenous Bayesian approach using simultaneous equations with spatial

random effects, which takes into account unobserved heterogeneity and spatial dependence,

in a context where there is recursive endogeneity. In particular, we employ an instrumental

variable approach to handle the endogeneity issue. The specification of the model is

yi = π0 + z′1iπ1 + αxi + u1i + vi (1)

where yi is the variable of interest that dependends on a set of K1 exogenous controls z1i, and

an endogenous regressor xi such that E(xiu1i) 6= 0. Omitting this fact would generate biased

and inconsistent parameter estimates.

In addition, u1i is an idiosyncratic stochastic shock, and vi is a spatial random effect to

control for spatial heterogeneity and spatial dependence between cross-sectional units. This

dependence emerges due to clusters and/or spillover effects between neighboring regional

units, and allow us to control for unobservable spatial heterogeneity.

Given that we implement an instrumental variable approach to handle endogeneity, we set

some exclusion restrictions in the main equation. These are associated with K2 instrumental

variables z2i that do not affect yi if xi is held constant. Then,

xi = φ0 + z′1iφ1 + z′2iαs + u2i (2)

where u2i is an idiosyncratic stochastic shock such that (u1i, u2i)
′ ∼ N (0,Ω), Ω = {ωij}.

5



Thus, ω12 captures the endogeneity of the system (Greenberg, 2008).

At this point, we should mention that an instrumental variable approach in the Bayesian

framework has advantages compared with the frequentist framework. For instance, two-

stage least squares and limited information maximum likelihood have some difficulties dealing

with weak instruments and small samples (Angrist and Pischke, 2008), whereas the Bayesian

approach does not require asymptotic criteria, and works well using weak instruments due

to the fact that the likelihood function and its identification are less important for deriving

estimates in Bayesian models (Zellner, 1996, Imbens and Rubin, 1997, Zellner, 1998, Crespo-

Tenorio and Montgomery, 2013).

We should keep in mind that our final objective is to carry out a statistical inference related

to complicated non-linear functions of the parameter estimates, for instance the Equivalent

Variation Equations (14) and (15) in Section 3, which can be troublesome using a frequen-

tist approach. Therefore, this is another argument in favor of using a Bayesian framework to

accomplish this task. In particular, using frequentist methods would require estimating Equa-

tion (1) by means of instrumental variables (Rey and Boarnet, 2004, Kelejian and Prucha,

2004, Fingleton and Le Gallo, 2008, Drukker et al., 2013, Liu and Lee, 2013) or the generalized

method of moments (Fingleton and Le Gallo, 2008, Drukker et al., 2013), and implementing

spatial resampling algorithms (Lahiri et al., 2006) or the Delta method (Casella and Berger,

2002) to find the standard errors associated with functions of the parameter estimates. These

tasks are difficult and tedious, require extra computational effort, and, more importantly, are

based on asymptotic results. On the other hand, the Bayesian framework allows us to obtain

full posterior distributions on all the parameters from Equation (1), and using simple prob-

abilistic rules, we obtain the posterior distributions of the functions of parameter estimates

without any additional computational effort nor assumptions regarding asymptotic outcomes

(Bernardo, 2003).
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The likelihood function of the system is

f(y,x|z1, z2; Ω,π,φ, π0, φ0,v) =
|Ω⊗ IN |−1/2

(2π)N/2
× (3)

exp

−1

2

N∑
i=1

(yi − π0 −w′iπ − vi, xi − φ0 − z′iφ)Ω−1

yi − π0 −w′iπ − vi

xi − φ0 − z′iφ


where wi

′ = [z′1i, xi], z′i = [z′1i, z
′
2i], π

′ = [π′1, α] and φ′ =
[
φ′1,α

′
s

]
.

Observe that the introduction of the spatial random effects, vi, i = 1, 2, . . . , N , is another

argument in favor of the Bayesian approach. In particular, the additional N parameters

cannot be estimated by means of maximum likelihood methods due to the limited number of

degrees of freedom (Seya et al., 2012). Thus, we follow a Bayesian hierarchical approach to

model the spatial random effects where each unit is associated with a particular vi, and the

conditional distributions of these parameters depend on their neighbors, through a contiguity

matrix and a precision parameter that is drawn from a Gamma distribution.

In particular, we assume that each spatial random effect has as prior distribution an

improper (intrinsic) conditionally autoregressive (CAR) structure (Besag et al., 1991):

vi|vi∼j ∼ N

∑
i∼j

wijvj∑
i∼j wij

,
σ2v∑
i∼j wij

 (4)

where vi∼j is a vector composed of the spatial components of the stochastic error of the

neighbors j of i (i ∼ j), and wij are the elements of the contiguity matrix which defines

the spatial structure of the model. The joint distribution of the improper CAR is v ∼

NN (v, σ2v(DW −WN )−1) where WN is the contiguity matrix and DW = diag(
∑

i∼j wij)

(Banerjee et al., 2004, Wall, 2004). Despite the fact that v has an improper distribution,

Theorem 2 in Sun et al. (1999) guarantees that a proper posterior distribution exists if (DW −

WN ) is nonnegative definite, the precision parameters have Gamma prior distributions, and

the intercepts have diffuse prior distributions. We satisfy all these criteria.

The contiguity relation is binary, that is, if region i and j are neighbors, the element ij is

equal to 1 and 0 otherwise, thus the contiguity matrix is symmetric, which is a requirement of
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the CAR model. By definition, the elements on the main diagonal of the contiguity matrix are

set equal to 0. σ2v is a parameter that defines the conditional variance of the spatial process,

where the conditional variance must be inversely proportional to the number of neighbors.

There is a spatial literature that favors CAR priors (Banerjee et al., 2004, Parent and

LeSage, 2008, Darmofal, 2009, Chakraborty et al., 2013), and another that supports SAR

specifications (Smith and LeSage, 2004, LeSage et al., 2007, Ohtsuka et al., 2010, LeSage and

Llano, 2013). Our decision to use a CAR prior distribution to model the spatial random

effects, instead of an SAR prior, is due to the fact that heteroscedasticity is inherent to the

CAR specification, and we achieve a higher level of heterogeneity (Cressie, 1993). In addition,

the CAR specification is a Markovian process in space, that is, the spatial heterogeneity is due

to local variation, rather than a global spatial pattern, which is present in SAR specification

(Anselin, 2003). Our intuition is that the unobserved heterogeneity present in our application,

which is related to residential electricity consumption in a municipality, is affected by the first

order neighbors (see Section 4, Maps (2) and (3) and their comments). An SAR specification

cannot be used in a two-component disturbances decomposition (Parent and LeSage, 2008),

like the one that we propose, and parameter estimates do not have an easy interpretation in

SAR models due to the presence of the spatial lags (Elhorst, 2014). Finally, a CAR prior offers

computational convenience because we just need to work with its conditional distributions,

avoiding matrix inversion. On the other hand, SAR models do not have full conditional

distributions with a convenient form, and this increases the computational burden (Banerjee

et al., 2004).

It is well known that the joint distribution of a CAR process is improper, and although

we can obtain a proper CAR process by just introducing a single parameter, we work with an

improper rather than a proper prior because the latter includes the spatial autocorrelation

parameter that needs to lie in a specific region, usually between −1 and 1. As a consequence,

the final solution using MCMC techniques becomes more complicated and computationally

expensive, and we would need to use a Gibbs sampler with some steps of the Metropolis–

Hastings algorithm (Greenberg, 2008). Additionally, this spatial autocorrelation term also
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limits the set of spatial patterns that the distribution can replicate and becomes much less

intuitive (Banerjee et al., 2004).

We should bear in mind that the improper CAR is identified only up to an additive

constant, thus to identify the intercepts in our model, it is necessary to add the constraint∑N
i=1 vi = 0. As a consequence, it is necessary to use improper uniform priors for the constant

terms (π0 and φ0) in both equations.

To complete our Bayesian specification, we set the remaining priors as follows: π ∼

NK1+1(π, Π) and φ ∼ NK1+K2(φ,Φ) (see Hoogerheide et al. (2007) for constructing natural

conjugate priors for instrumental variables regression in more general settings, but without

considering spatial effects). In our application, we set π = 0K1+1, φ = 0K1+K2 , Π =

1000IK1+1 and Φ = 1000IK1+K2 . This implies vague prior information where there is no

effect of each control variable on the dependent variables.

In addition, we assume a Wishart distribution for Ω−1, that is, Ω−1 ∼ W2(ω,Ω). In

particular, we set ω = 3 and Ω = I2, where setting the degrees of freedom to p+ 1, where p is

the dimension of the covariance matrix, the Wishart form reduces to π(Ω−1) ∝ |Ω−1|−(N+1)/2,

which is a diffuse prior used by Savage that emerges using Jeffrey’s invariance theory (Zellner,

1996). Thus, a priori, there is no endogeneity, and the fat-tailed prior will guarantee the

robustness of the outcomes regarding this distribution (Berger, 1985).

To specify the prior distribution of the precision parameter of the CAR component, we

must take into account that there are two different sources of stochastic variability in our

main equation, u1i and vi. As a consequence, both sets of hyperparameters of the prior

distributions of these random effects cannot imply arbitrarily large variability, since these

effects would be unidentifiable. We try to identify two random effects using a single observation

at each spatial unit. Therefore, we cannot use arbitrarily vague prior distributions in our

hierarchical approach. We propose a fair argument to construct the prior distribution of the

precision parameter of the CAR component (Banerjee et al., 2004). Specifically, we posit

a priori that the proportion of the variability due to spatial effects is 0.5, that is, we set

V ar(u1i) = V ar(vi). Thus, taking into consideration that u1i ∼ N (0, ω11) where ω11 ∼
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IG((ω − 1)/2, 1/2) due to our prior assumptions, and V ar(u1i) = ω11 ≈ σ2
v

0.72(
∑
i∼j wij)

Ave ≈

V ar(vi) (Bernardinelli et al., 1995) where
(∑

i∼j wij

)Ave
is the average number of neighbors,

we obtain that the prior distribution of 1/σ2v is approximately proportional to G(ω−12 , 1/2).

Moreover, we find in our application that the posterior parameter estimates are robust to

changes of the hyperparameters of the CAR’s precision (available upon request).

We assume that the prior distributions are independent, that is,

π(Ω,π,φ, π0, φ0,vi, σ
2
v) = π(Ω)π(π)π(φ)π(π0)π(φ0)π(vi|σ2v)π(σ2v) (5)

The full conditional posteriors for all parameters are

Ω|π,φ, π0, φ0,v, Data ∼ IW2(ω̄, Ω̄)

ω̄ = ω +N

Ω̄ =

Ω−1 +

N∑
i=1

yi − π0 −w′iπ − vi

xi − φ0 − z′iφ

 (yi − π0 −w′iπ − vi, xi − φ0 − z′iφ)


(6)

To sample π, we use f(yi, xi|Θ) = f(yi|xi,Θ)f(xi|Θ) where Θ = (Ω,π,φ, π0, φ0,v). In

particular, yi|xi,Θ ∼ N (π0+w′iπ+vi+
ω12
ω22

(xi−φ0−z′iφ), ψ11) where ψ11 = ω11−
ω2
12
ω22

. Then,

π|Ω,φ, π0, φ0,v, Data ∼ NK1+1(π̄, Π̄)

Π̄ =
[
Π−1 + ψ−111 W′W

]−1
π̄ = Π̄

[
Π−1π + ψ−111 W′y1

] (7)

where W is an N × (K1 + 1) matrix whose rows are w′i and y1 is an N × 1 vector whose

elements are yi − ω12
ω22

(xi − φ0 − z′iφ)− π0 − vi.

We follow the same procedure to deduce the conditional posterior distribution of φ, that

is, we use f(yi, xi|Θ) = f(xi|yi,Θ)f(yi|Θ). In particular, xi|yi,Θ ∼ N (φ0 + z′iφ + ω12
ω11

(yi −
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π0 −w′iπ − vi), ψ22) where ψ22 = ω22 −
ω2
12
ω11

. Thus,

φ|π,Ω, π0, φ0,v, Data ∼ NK1+K2(φ̄, Φ̄)

Φ̄ =
[
Φ−1 + ψ−122 Z′Z

]−1
φ̄ = Φ̄

[
Φ−1φ+ ψ−122 Z′y2

] (8)

where Z is an N × (K1 + K2) matrix whose rows are z′i and y2 is an N × 1 vector whose

elements are xi − ω12
ω11

(yi − π0 −w′iπ − vi)− φ0.

Regarding the posterior distribution of the constant term π0, using as prior an improper

uniform distribution and given f(yi, xi|Θ) = f(yi|xi,Θ)f(xi|Θ), we obtain

π0|φ,π,Ω, φ0,v, Data ∼ N (π̄0, ψ11/N)

π̄0 =
1

N

N∑
i=1

{
yi −

ω12

ω22
(xi − φ0 − z′iφ)−w′iπ − vi

} (9)

In a similar way, using as prior an improper uniform distribution for φ0, and the fact that

f(yi, xi|Θ) = f(xi|yi,Θ)f(yi|Θ), we obtain

φ0|π0,φ,π,Ω,v, Data ∼ N (φ̄0, ψ22/N)

φ̄0 =
1

N

N∑
i=1

{
xi −

ω12

ω11
(yi − π0 −w′iπ − vi)− z′iφ

} (10)

As we mentioned, we just need to use the conditional prior distribution to obtain the posterior

distribution of the spatial random effects. In particular, using the fact that f(yi, xi|Θ) =

f(yi|xi,Θ)f(xi|Θ), we find that

vi|v−i, φ0, π0,φ,π,Ω, σ2v , Data ∼ N (ξ̄i, η̄i)

η̄i =

[
ψ−111 +

(
σ2v
wi+

)−1]−1

ξ̄i = η̄i

( σ2v
wi+

)−1∑
i∼j

wij
wi+

vj

+ ψ−111 v
0
i


(11)
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where v−i is the set of spatial random effects excluding region i, wi+ =
∑

i∼j wij and v0i =

yi − ω12
ω22

(xi − φ0 − ziφ)− π0 −wiπ. To identify π0, we must add the constraint
∑N

i=1 vi = 0.

Therefore, this constraint must be imposed numerically by recentering each v vector around

its own mean following each Gibbs iteration.

In addition,

v|φ0, π0,φ,π,Ω, σ2v , Data ∼ NN (v̄, V̄)

V̄ =
[
ψ−111 IN + σ−2v (DW −WN )

]−1
v̄ = V̄

[
ψ−111 v0

]
where v0 is an N × 1 vector whose elements are v0i .

Finally,

1/σ2v |v ∼ G(ᾱ, β̄)

ᾱ =
ω − 1

2
+N/2

β̄ = 1/2 +
v′(DW −WN )v

2

(12)

An unfortunate consequence of introducing spatial random effects is a reduction of the effi-

ciency of MCMC sampling schemes. This in turn generates poor mixing and slow convergence

(Best et al., 1999). To mitigate this problem, we draw multivariate blocks from distributions

(6)–(12), whenever possible, using the Gibbs sampler algorithm (Geman and Geman, 1984)

(other possible strategy is to use Acceptance-Rejection within a Direct Monte Carlo proposed

by Zellner et al. (2014)).

1.1 Simulation Exercises

In this subsection we present the results of a limited Monte Carlo experiment comparing

Bayesian and frequentist estimators applied to a very simple two-equation simultaneous model

with spatial effects. The main objective of these exercises is to illustrate the consequences

for parameter estimates and prediction of omitting important factors of the data generating
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process of the estimators.

In particular, we implement five estimators: our proposed Bayesian Instrumental Vari-

able with Spatial Effects, two instrumental variable approaches without spatial effects (one

Bayesian and one frequentist), a maximum likelihood estimator with conditional autoregres-

sive spatial effects, and ordinary least squares.

Regarding the estimation of the endogenous Bayesian model with spatial effects, we im-

plement the Gibbs sampler algorithm using one million iterations and a burn-in of 500,000.

Then, we draw an observation every 50 iterations to have an effective sample size of 10,000.

This last step is done to mitigate the autocorrelation of the chains. All the chains seem stable,

and different diagnostics indicate that the chains converge to stationary distributions (out-

comes available upon request). The same procedure was followed to implement the Bayesian

instrumental model without spatial effects, except that in this case it was only necessary to

iterate 100,000 times with a burn-in period of 50,000, drawing every 5 iterations, to achieve

convergence.

The formulation of our model is

yi = π0 + π1xi + vi + u1i

xi = φ0 + φ1z1i + φ2z2i + u2i

where v ∼ NN (0, σ2v(DW −WN )−1),

u1i
u2i

 ∼ N

0

0

 ,
σ11 σ12

σ21 σ22


, z1i ∼ N (0, σ2z) and

z2i ∼ N (0, σ2z).

We generate four possible scenarios under the conditions summarized in Table (1). In all

four scenarios the parameters π0, π1, φ0 and φ1 were set to 0.7, −1.2, 0.5 and 0.8, respectively.

On the other hand, φ2 was set to 0 for runs I and III and −1.0 for runs II and IV. This is

to illustrate the consequences on just-identified and over-identified cases. In runs I to IV, the

covariance structure of the stochastic shocks is the same as well as the spatial random effects,

which are based on a rook binary contiguity criterion. In addition, the variance parameter of

the CAR effect is such that 50% of the variance of the main interest variable yi is explained
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by the spatial effect. Finally, the variance of the instruments is equal to 0.2 in scenarios I and

II and 2 in scenarios III and IV. The main idea is to show the consequences associated with

using weak instruments.

Observe that if σ12 = 0 and v = 0, then there are no endogeneity or spatial effects, so we

should use OLS, whereas if σ12 = 0 but v 6= 0, the MLE with CAR effects is appropriate. In

addition, σ12 6= 0 and v = 0 requires taking into account endogeneity issues without spatial

effects, so IV estimators (frequentist and Bayesian) are good alternatives. Finally, an IV with

spatial effects is required if both σ12 and v are not equal to zero. Therefore, we implement

different estimators designed to take into account different nested models.

For all scenarios, we generate samples of size 49, 100 and 144, and 100 repeated trials to

assess the estimators’ performance, which is the common approach employed in the frequentist

framework, although this methodology is not the most consistent with the Bayesian statistical

framework (Zellner, 1996).

We present in Table (2) the Mean Squared Error and the Mean Absolute Error to assess

the performance of the point estimators of π1. To calculate both measures, we use the median

estimates of the Bayesian procedures, and the point estimates of the frequentist approaches.

The main characteristic that we found in this table is that Bayesian estimates obtain the

lowest MSE and MAE. The general pattern is that the Bayesian Instrumental Variable with

Spatial Effects has the lowest errors in presence of strong instruments using small and large

sample sizes, and when there are weak instruments, our proposal obtains the best outcomes

using large sample sizes, whereas the Bayesian Instrumental Variable gets the lowest errors

using small sample sizes. In addition, it is remarkable that the frequentist Instrumental

Variable estimator has by far the highest errors using weak instruments, in both exactly and

over identified cases. We see similar outcomes when comparing ML CAR and OLS. In general,

we observe that errors are lower using strong instruments compared to weak instruments.

To assess the forecasting performance of the estimators, we use the Mean Squared Predic-

tion Error and the Mean Absolute Prediction Error. As can be seen in Table (3), the Bayesian

Instrumental Variable with Spatial Effects obtains by far the lowest MSPE and MAPE, fol-
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lowed by the maximum likelihood estimator with CAR effects. Taking into account spatial

effects substantially improves the prediction performance (Reich et al., 2006).

2 The Colombian energy market

To better understand our application and its microeconomic foundation, there are some char-

acteristics of the Colombian electricity market that must be taken into consideration. In

particular, we must explain the price changes, and thus, their welfare implications. First,

Colombian law divides its population into socioeconomic strata. This segmentation is defined

as “an instrument that allows a municipality or district to classify its population in distinct

groups or strata with similar social and economic characteristics.” (Bushnell and Hudson,

1996). This classification was actually initiated to establish cross-subsidies that would help

the lower socioeconomic classes to pay for utilities such as electricity. Housing characteris-

tics are the main criteria used for classifying the population into six strata: one represents

lower-low, two is low, three is upper-low, four is medium, five is medium-high, and six is high.

Second, the Colombian energy regulator establishes a subsistence electricity consumption that

is subsidized for strata one, two and three. The regulator determines the maximum subsidy

percentage, and each municipality defines its own measure within this limit. In addition,

the subsistence consumption level depends on whether the altitude of the municipality ex-

ceeds one thousand meters above sea level or not, due to weather conditions that may affect

electricity consumption. Municipalities located near sea level have higher temperatures, and

as a consequence they present a higher electricity consumption. Specifically, the subsistence

consumption is 173 kWh a month per household for the municipalities below this threshold

and 130 kWh for the ones above it.1 Third, the Colombian energy regulator stipulates that

each electric company must have the same reference tariff throughout its entire market, which

involves many municipalities. And fourth, there are basically four components to establish

the reference electricity tariff for each company: electricity generation, transport at the coun-

try level, distribution at the market level, and commercialization. As a consequence of this

1Resolution 0355 of the Mining/Energy Planning Unit (UPME).
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regulation framework, we should bear in mind that although there is just one reference tariff

for each electric company, there are different average electricity prices among the consumers

of different strata and municipalities.

The acquisition of EADE by EPM led to a tariff unification process that generated welfare

effects, especially for the households belonging to stratum one. Such a household’s electricity

consumption is approximately 5% of its income in the province of Antioquia, whereas this

share is less than 1% for stratum six. In particular, there is EPM, whose market was charac-

terized as an urban region with high population density, and on the other hand there is EADE,

whose market was a rural area with low population density. Under the Colombian electricity

regulation framework, ceteris paribus, these market structure differences imply a higher refer-

ence tariff in the latter company than in the former. This is because of the third and fourth

components of the reference tariff: distribution at the market level and commercialization.

Thus, the acquisition of EADE by EPM implied that the stratum one electricity consumers

of the former company experienced a huge decrease in their electric bills, while the consumers

of the latter company faced a slight increase.2 As a consequence, these changes generated

considerable welfare impacts on the poorest inhabitants of the province of Antioquia, who

live in the rural areas.

3 Microeconomic Foundations: Equivalent Variation

We apply our methodology to analyze the welfare changes arising from the tariff unification in

the municipalities of Antioquia using an Equivalent Variation (EV) approach. The Equivalent

Variation measures the “amount that the consumer would be indifferent about accepting in

lieu of the price change; that is, it is the change in her wealth that would be equivalent to the

price change in terms of its welfare impact” (Mas-Colell et al., 1995). The EV presents several

advantages over other welfare measures used in applied economic work, such as the Compen-

sating Variation (CV) and consumer surplus (CS). In particular, Chipman and Moore (1980)

and Mas-Colell et al. (1995) show that the EV is the appropriate measure to correctly order

2Regulations stipulate that strata one and two cannot have a tariff increase higher than the inflation rate.
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different pricing policies in welfare analysis. The CV orders alternatives correctly only when

consumers exhibit homothetic preferences and income remains unchanged. However, in our

empirical application, tariff unification translates into implied subsidies for some consumers,

and therefore, changes in income. Another argument in favor of the EV is that, by definition,

it is an ex-post measure of welfare based on the Hicksian demand function. It takes into

account income effects associated with price changes, which are ignored by the Marshallian

demand function on which the CS is based on. Furthermore, Hausman (1981) showed that

it was possible to derive EV as a product of observable Marshallian demand functions. His

method can be applied to the case of linear budget constraints, and both Reiss and White

(2006) and Ruijs (2009) extend it to the case of budget constraints generated by block-pricing

systems using linear demand functions.

To build our application, we consider the two-good case in which a representative agent

consumes a good x, say electricity, and an aggregate good as a numeraire (xa). We note

that, for our application, the representative agent assumption is not as restrictive as it may

seem. In particular, given that we work with the stratum one population at the municipality

level, a fairly homogeneous group within each polygon, the assumption that agents with

similar preferences can be aggregated into a single agent per municipality is not unthinkable.

This could be thought of as a case of dispersion in preferences and income where, although

individuals may present erratic utility functions, the aggregate demand for the commodities of

interest are well-behaved (Trockel, 1987). In addition, representative agent models dominate

microfounded macroeconomics due to their simplicity and tractability (Acemoglu, 2008). One

final argument is the impossibility of obtaining data at the micro-level to correct for the bias

raised by agent heterogeneity. Therefore, although we are aware of the disadvantages of the

representative agent (Kirman, 1992, Reiss and White, 2006), we will continue to work under

this assumption.

Throughout this paper we will indicate a situation before or after tariff unification with

the subscripts 0 or 1, respectively. Subsistence consumption will be denoted by x̄. This

subsistence consumption divides demand into two possible tiers, denoted by superscript 1
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when the consumer demands a quantity less than x̄ and 2 when it is greater than x̄. Call

x1 the new demand at prices p1 and expenditure e(p1, u1) = y0. Tangency between u1 and

the budget curve characterized by p0 = (p10, p
2
0, 1) and expenditure e(p0, u1) is referred to as

virtual consumption (xe, see Figure (1)).

Using the following demand function,

x(p, y) = pαyδ1ez
′δ (13)

The Equivalent Variation associated with the first block is

EV (p0,p1, y0) =

[
1− δ1
1 + α

(
p
1(1+α)
0 − p1(1+α)1

)
ez
′δ + y1−δ10

] 1
1−δ1
− y0 (14)

For the second block, the Equivalent Variation is

EV (p0,p1, y0) =

[
1− δ1
1 + α

(
p
2(1+α)
0 − p2(1+α)1

)
ez
′δ +

(
y0 + (p21 − p11)x̄

)1−δ1] 1
1−δ1
−

(p20 − p10)x̄− y0

(15)

We can see from Equations (14) and (15) that a price decrease of an inelastic necessity

good produces welfare gains that can be quantified through a positive Equivalent Variation.

Equation (15) takes into consideration that the subsidy has effects on the expenditure function

as well as on the agent’s income.

4 Results

4.1 Data

Data was collected for the average individual of stratum one in all 125 municipalities of the

department of Antioquia (Colombia) in 2005. Table (A.1) in the Appendix lists all the vari-

ables, their measurement units, and sources. We standardized both electricity and substitute

good prices to US$/kWh by taking their calorific power into account. For municipalities in the

Metropolitan Area, the substitute good was natural gas. For the other municipalities, it was
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liquefied petroleum gas due to absence of natural gas. In addition, we have to mention that

by construction, the average price is affected by electricity consumption because the average

electricity tariff is a weighted average between the tariffs in the first and second tiers, where

the weights depend on the observed and subsistence consumption levels. This generates the

endogeneity problem in our application.

We present descriptive statistics in Table (4). The average annual electricity consumption

is 234.87 kWh with a standard deviation of 117.81 kWh. The prices for electricity and the

substitute good averaged 6.10 and 3.00 cents a kWh, respectively. Additionally, the average

annual per capita income was US$397, with a standard deviation of US$95.24. Approximately

29% of the municipalities in the province of Antioquia are located less than 1000 meters above

sea level, the average urbanization rate is 45.8%, and 77.4% of the municipalities used to be

covered by EADE prior to its acquisition by EPM.

We can observe the geographical distribution of the electricity consumption in Map (2).

In particular, the average consumption of electricity tends to be higher in regions that are

located less than one thousand meters above sea level (the Northern and Eastern regions).

Consumption is also exceptionally high in the Metropolitan Area of Antioquia (South-Central

region), where most of the population and economic activity of the province are focused.

Map (3) shows that most of the spatial autocorrelation is due to local clusters. This

obeys unobserved social, cultural, economical and geographical restrictions, like the limited

and bad roads between municipalities or constrained budgets that poor households face in

these municipalities. Avoiding a global spatial effect regarding electricity consumption for the

inhabitants of the province appears to be the most natural approach, as is provided by the

CAR specification.

4.2 Model Specification

We need to estimate the electricity demand function to perform statistical inference of the

Equivalent Variation. However, it is necessary to take into account the endogeneity issue

between price and consumption to avoid biased and inconsistent parameter estimates; it is
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also necessary to introduce spatial effects in order to have a good municipality electricity pre-

diction. We realize that both elements are crucial to obtaining a reliable Equivalent Variation

measure in light of Equations (14) and (15).

As instrument, we use a dummy variable that is equal to 1 if the municipality was ser-

viced by EADE, and 0 otherwise. The argument behind this instrument is that the national

electricity regulations generate restrictions that imply that the only effect of the electricity

supplier on average consumption in each municipality is through price. However, the regional

market reference tariff, and as a consequence the average electricity price of the low strata in

each municipality, is drastically affected by each supplier.

The structural specification of our system is

lnxi = π0 + z′1iπ1 + α ln pi + u1i + vi (16)

ln pi = φ0 + z′1iφ1 + αsz2i + u2i (17)

where xi and pi are the electricity consumption and price, z′1i = (ln yi, ln p
s
i , alti, lnurbi)

is a vector of exogenous covariates that affects the system (income, substitute price, sea

level dummy, and urbanization rate) and z2i = EADEi is our instrument. Additionally, π0,

π′1 = (π1, π2, π3, π4), φ0, φ′1 = (φ1, φ2, φ3, φ4), α and αs are parameters to be estimated.

Finally, u1i and u2i are the idiosyncratic error terms associated with the demand and price of

each municipality, and vi are spatial random effects to control for spatial heterogeneity and

spatial dependence between cross-sectional units that is present in our application (see Map

(3)). These emerge due to clusters and/or spillover effects between neighboring municipalities,

and allow us to control for unobservable spatial heterogeneity. Omitting this last component

can cause a loss of good statistical properties of estimators (Anselin, 1988).

Unfortunately, we find just one available instrument: however, we can use this situation

to illustrate that our econometric framework encompasses the more simple technique of mul-

tivariate regression models when there is an exactly identified system (Zellner et al. (2014)

warn about using improper priors in exactly identified systems). In particular, we estimate
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the reduced model that results from substituting (17) into (16) in our application.

lnxi = δ0 + δ1 ln yi + δ2 ln psi + δ3alti + δ4 lnurbi + γEADEi + µ1i + vi

ln pi = φ0 + φ1 ln yi + φ2 ln psi + φ3alti + φ4 lnurbi + αsEADEi + µ2i

(18)

where µ1i = u1i + αu2i and µ2i = u2i, such that (µ1i, µ2i)
′ ∼ N (0,Σ), Σ = {σij}. The

structural parameters can be recovered using α = γ/αs and πl = δl − φlα, l = {0, 1, . . . , 4}.

Setting z′i = (ln yi, ln p
s
i , alti, lnurbi, EADEi), δ′ = (δ1, δ2, δ3, δ4, γ), φ′ = (φ1, φ2, φ3,

φ4, αs) and v′ = (v1, v2, . . . , vn), and taking into consideration that the determinant of the

Jacobian matrix of the transformation is 1, the likelihood function of the system is

f(ln x, ln p|z; Σ, δ,φ, π0, φ0,v) =
|Σ|−N/2

(2π)N/2
× (19)

exp

−1

2

N∑
i=1

(lnxi − z′iδ − δ0 − vi, ln pi − z′iφ− φ0)Σ−1

lnxi − z′iδ − δ0 − vi

ln pi − z′iφ− φ0




We can estimate our reduced form model with spatial random effects using this likelihood,

and prior independent distributions such that

π(Σ, δ,φ, δ0, φ0,vi, σ
2
v) = π(Σ)π(δ)π(φ)π(δ0)π(φ0)π(vi|σ2v)π(σ2v) (20)

where Σ−1 ∼ W2(3, I2), δ ∼ N5(0, 1000I5), φ ∼ N5(0, 1000I5), π(δ0) ∝ 1, π(φ0) ∝ 1,

vi|vi∼j ∼ N
(∑

i∼j
wijvj∑
i∼j wij

, σ2
v∑

i∼j wij

)
and 1/σ2v ∼ G(1, 1/2). As we can see, most of the

priors are vague or diffuse, except the Gamma distribution, which was set to reflect the prior

belief that 50% of the variability of the reduced model are subject to spatial effects. However,

we find in our application that the posterior parameter estimates are robust to changes in the

hyperparameters of the CAR’s precision (available upon request).

We should bear in mind that the posterior framework that was deduced in Section (1) ap-

plies to our empirical exercise. We just need to take into consideration that in this subsection,

wi = zi and we treat δ in a similar way as π.

We must bear in mind two aspects that are important in our application. First, a just-
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identified model allows δ to have independent variation, a situation that is not possible with

over-identified models in reduced form. Second, under independent prior distributions, we

can express the posterior as π(π|δ, Data) ∝ π(π|δ), that is, the conditional posterior of the

structural parameters is unaffected by the observations once the reduced form parameters are

taken into account (Zellner, 1996).

4.3 Estimation Results

Since the solution for the model depends on the selection of the contiguity matrix, we will test

our specification under three different matrices. The first one uses the road lengths between

each municipality, regarding two regions to be neighbors if the roads connecting them are

less than 300 kilometers long, which ensures that each region has at least one neighbor. The

second uses the queen criterion, where two regions are considered as neighbors if they share at

least a single border point. The third one uses the rook criterion, where regions are considered

neighbors if they share more than one border point.

We estimate each of our models using Markov chain Monte Carlo techniques (MCMC, see

Robert and Casella, 2004, for details). In particular, we use the Gibbs sampling algorithm,

due to the availability of all the conditional posterior distributions (Geman and Geman, 1984).

After running the chains for 10 million iterations, we discard the first 5 million and draw an

observation every 500 iterations to get an effective sample size of 10,000. We compute several

diagnostics to assess the convergence and stationarity of the chains. In particular, we employ

the method due to Heidelberger and Welch (1983), the mean difference test proposed by

Geweke (1992), and the diagnostic from Raftery et al. (1992). We show that in general all the

chains under different contiguity criteria achieve convergence and stationarity in the Table

(B.1) in the Appendix, subsection B.3

The correlation of the instrument with the logarithm of the price is approximately −0.46,

its variability is very low due to its being a dummy variable, its standard deviation is equal to

0.42,4 and its 90% probability highest density interval in the price equation is (−0.48,−0.22)

3All the simulation exercises and posterior analyses were performed using R (R Core Team, 2014).
4As this instrument is a Bernoulli random variable, its possible maximum standard deviation is equal to
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with a mean and median equal to −0.35. However, even if this instrument were weak, the

Bayesian approach works well in this context using proper priors due to the fact that the

likelihood function and its identification are less important for deriving estimates in Bayesian

models (Zellner, 1996, Imbens and Rubin, 1997, Zellner, 1998, Crespo-Tenorio and Mont-

gomery, 2013).

We present in Table (5) the main outcomes associated with the structural parameters of

our estimation exercises, using different contiguity criteria to check their robustness. And as

we can see, all contiguity criteria yield similar results. In particular, we present the posterior

mean and median that minimize the quadratic and absolute value loss functions under a

decision theory framework. In addition, in order to describe the inferential content of the

posterior distributions of the parameters, we present the 90% highest probability density

credible intervals for each parameter of interest. Finally, to test whether the microeconomic

restrictions are compatible with the observed data, we calculate the odds ratio in favor of the

null hypothesis H0 : θ ∈ (0,∞) versus H1 : θ ∈ (−∞, 0], using 0.5 as the prior probability

for each of these hypotheses. This procedure is consistent with a symmetric loss function,

for instance a zero–one loss function (Berger, 1985, Zellner, 1996). Testing microeconomic

restrictions is very important in this setting because our main objective is to carry out a

statistical inference regarding Equivalent Variation, and so there are some implicit restrictions

placed on the parameter estimates. Thus, we follow a statistical decision theory framework,

where an action regarding the domain of the posterior densities must be made. These actions

are based on prior and sample information. Kleit and Terrell (2001) reiterate the importance

of placing restrictions on Bayesian models and priors based on microeconomic theory.

Regarding endogeneity in our application, we find that the posterior median estimates of

σ12 are approximately −0.06 using different contiguity criteria, and the highest probability

intervals at 90% of credibility are (−0.100,−0.022), (−0.088,−0.043), and (−0.096,−0.019)

using roads, queen, and rook contiguity criteria, respectively. This evidence suggests that

there is endogeneity between electricity consumption and price.

Given that we obtain robust outcomes regarding the contiguity criteria, we discuss the

0.5. This would be a limitation of using dummy variables as instruments in a frequentist approach.

23



results associated with the road length criterion. This criterion better illustrates the con-

nectivity between municipalities in a province that is characterized by irregular geographical

conditions and poor roads. Thus, when we observe the posterior mean and median, we see that

all the point estimates have the expected signs. Electricity behaves as both an ordinary and

a normal good, given the negative price-demand elasticity and positive income-demand elas-

ticity. For instance, the average as well as the median price demand elasticity is −0.88, that

is, an increase of 1% in the price of electricity implies a reduction of 0.88% in consumption.

In addition, the average and median income elasticity is approximately 0.30, which implies

that a 1% income increase means a 0.30% increase in electricity consumption. Regarding

the highest probability density credible intervals of these parameters, we have that these are

(−1.45,−0.28) and (−0.05, 0.64) for the price elasticity and income elasticity, respectively. In

addition, we calculate the inverse odds ratio in favor of the null hypothesis H0 : α ∈ (−∞, 0]

to check the microeconomic restriction of a negative price elasticity. This is equal to 0.014

that means an odds ratio supporting H0 equal to 71.42, which implies that log10(R01) = 1.85.

Thus, we have very strong evidence for H0 following Jeffreys’s guidelines (Greenberg, 2008).

Regarding the null hypothesis of a positive income elasticity, H0 : π1 ∈ (0,∞), which is sug-

gested by most of the literature on electricity demand (Hsiao and Mountain, 1985, Dergiades

and Tsoulfidis, 2008), we have log10(R01) = 1.07, indicating strong evidence for H0.

Regarding cross elasticity with the substitute good, although this is positive on average,

a 1% increase in the price of the substitute implies a 0.12% increase in electricity demand, so

there is weak evidence for H0 : π2 ∈ (0,∞) due to the fact that log10(R01) = 0.40. Probably

this is because of the lack of electricity substitutes in rural areas, or the fact that the demand

for electricity is derived for most household appliances which cannot function with anything

but electricity. For this parameter, we observe a HPD credible interval between −0.21 and

0.45. The mean altitude semi-elasticity is equal to 0.14, which means that municipalities

located at lower altitude demand approximately 14% more electricity, ceteris paribus. In this

case, we have log10(R01) = 0.97, which is substantial evidence for H0 : π3 ∈ (0,∞). Finally,

there is the urbanization rate, which has a strong positive effect on electricity consumption,
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as one would expect: log10(R01) = 2.96 for H0 : π4 ∈ (0,∞), which is decisive support for

H0. The median and mean urbanization rate elasticity is approximately 0.57 with a highest

probability density credible interval equal to (0.41, 0.72).

Despite the fact that our prior assumption regarding the participation of the spatial effects

on electricity consumption variability is 50%, we find that the posterior mean proportion is

8.56% with a standard deviation equal to 9.55% and the HPD at 90% equal to (0.40%,21.11%).

This outcome is robust to many hyperparameter combinations of the prior distribution of the

precision parameter of the CAR component (available upon request).

4.4 Welfare Implications

The tariff unification procedure brought about by the acquisition of EADE by EPM created

tier price variations that depended on whether the municipality was part of the Metropolitan

Area or not. In particular, by the end of this process, p11 and p21 changed according to the

values in Table (6) with respect to their pre-unification values. We expect to see that the

municipalities which consumed less than the subsistence consumption and are not part of the

Metropolitan Area have the largest welfare gains, followed by those that are not part of the

Metropolitan Area and had average consumption higher than the subsistence consumption.

The welfare effects in the municipalities that belong to the Metropolitan Area are not clear and

will depend on whether they consumed more than the subsistence consumption or not, and

how much of their consumption was above this threshold, among other factors (Ramı́rez and

Londoño, 2009). Here, we note that subsistence consumption is measured in kilowatts/hour a

month per household. Therefore, in order to make it comparable with our measure of income,

we work with an annual per capita consumption for each altitude.5

To compute the posterior distribution of the Equivalent Variation, we follow the guide-

lines of the Bayes theorem, and renormalize the unrestricted posterior distribution of each

parameter according to the outcomes of the microeconomic restrictions in Table (5), where

the statistical evidence suggests the fulfillment of those restrictions (Berger, 1985, Bernardo,

5The original levels were multiplied by 12 to obtain an annual measure and then divided by an average of
4.04 people per household in stratum one to get our variable of interest.
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2003). This allows us to obtain sensible results, based on a statistical decision theory frame-

work, regarding the Equivalent Variation, which is calculated for each municipality at each

observation of these new chains, through Equations (14) and (15). This procedure leaves an

effective sample size of 5,410 with which to make the computations.

Table (7) lists the mean, median, and 90% highest probability density interval for the total,

for the Metropolitan Area, and for the rest of Antioquia, as a share of original income y0.

As can be observed, the median Equivalent Variation in the whole province is approximately

0.63%, and its standard error is approximately 0.67%. This welfare gain is lower in the

Metropolitan Area (0.14%) and greater in the rest of the province (0.65%). The 90% HPD

interval is equal to (0.0%, 1.9%), and the posteriors tend to be skewed to the right, as the mean

is greater than the median. For stratum one households, this impact can be very substantial,

especially for those who are located in regions other than the Metropolitan Area of Antioquia.

Map (4) presents the median Equivalent Variation as a share of income in the province.

The spatial distribution is low around the Metropolitan Area (South-Central region) and high

in the more rural areas, especially Eastern region, which received the greatest improvement

and benefits from the tariff unification.

5 Concluding Remarks

In this paper, we introduced spatial random effects into an endogenous Bayesian framework

with simultaneous equations and deduced the complete conditional posterior distributions.

Thus, we were able to draw observations from the model using a Gibbs sampler algorithm.

This approach allows dealing simultaneously with three shortcomings, which would be quite

difficult to manage simultaneously with a frequentist approach. First, it permits taking into

account the endogeneity issues in our estimation procedure. Second, we can carry out statis-

tical inferences of complicated non-linear functions of the parameter estimates in our appli-

cation. Third, it allows controlling for the non-observable heterogeneity and spatial autocor-

relation present in cross-sectional data.

We performed simple Monte Carlo simulation exercises which show that our econometric
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approach handles the endogeneity and spatial effects well. In particular, the posterior point

estimates are sensible, and the prediction is significantly improved by introducing the spatial

effects.

Using these features of the Bayesian framework to our advantage, we estimated the Equiv-

alent Variation welfare measure, as a share of mean income, that stemmed from a process of

electricity tariff unification in the province of Antioquia (Colombia), with data at the mu-

nicipality level. We estimated a demand function for electricity and found the average price,

income, substitute, and urbanization rate demand elasticities to be, respectively, −0.88, 0.30,

0.12, and 0.57. The semi-elasticity associated with a dummy for the altitude of the munic-

ipalities was approximately 0.14. Using this information as input, we found the Equivalent

Variation for the province as a whole to be 0.87% on average and with a median of 0.63%.

When taking into account the welfare gains of the municipalities of the Metropolitan Area,

these amount only to 0.13%. However, the municipalities that are not part of the Metropolitan

Area gained on average 0.94%, while the 10% of the municipalities with the least urbanization

and least income increased their welfare by an amount well above 2% of their initial income.

Comparing these figures with the the amount that low income households expend on pensions

(1.13%), health care (2.04%), and education (4.79%) illustrates the huge effect of electricity

regulation on the welfare of the poor.

5.1 Tables

Table 1: Conditions under which data were generated

Run I Run II Run III Run IV
π0 = 0.7 π0 = 0.7 π0 = 0.7 π0 = 0.7
π1 = −1.2 π1 = −1.2 π1 = −1.2 π1 = −1.2
φ0 = 0.5 φ0 = 0.5 φ0 = 0.5 φ0 = 0.5
φ1 = 0.8 φ1 = 0.8 φ1 = 0.8 φ1 = 0.8
φ2 = 0.0 φ2 = −1.0 φ2 = 0.0 φ2 = −1.0
σ11 = 1 σ11 = 1 σ11 = 1 σ11 = 1
σ22 = 1 σ22 = 1 σ22 = 1 σ22 = 1

σ12 = −0.5 σ12 = −0.5 σ12 = −0.5 σ12 = −0.5
WN is rook {0, 1} WN is rook {0, 1} WN is rook {0, 1} WN is rook {0, 1}

σ2
v = 0.72

(∑
i∼j wij

)Ave
σ11 σ2

v = 0.72
(∑

i∼j wij
)Ave

σ11 σ2
v = 0.72

(∑
i∼j wij

)Ave
σ11 σ2

v = 0.72
(∑

i∼j wij
)Ave

σ11

σ2
z = 0.2 σ2

z = 0.2 σ2
z = 2 σ2

z = 2
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Table 4: Descriptive Statistics

Variable Mean Std. Dev. Min Max

Consumption (kWh) 234.874 117.811 26.595 588.937
Electricity Price (US$) 0.061 0.024 0.039 0.240

Income (US$) 397.085 95.242 230.514 619.227
Substitute Price (US$) 0.030 0.006 0.016 0.056

Sea level 29.032% 45.575% 0.000 1.000
Urbanization 45.876% 19.917% 10.700% 98.247%

Coverage (EADE) 77.419% 41.981% 0.000 1.000

Source: Author’s calculations

Table 5: Summary of structural parameter posterior estimates

Road Length Contiguity

Parameter Mean Median
90% HPD Interval

R01 = P (θ∈(0,∞))
P (θ∈(−∞,0]))Lower Upper

Constant 1.913 1.940 -1.539 5.393 4.663
Price -0.886 -0.882 -1.449 -0.278 0.014

Income 0.301 0.297 -0.054 0.636 11.920
Subs. Price 0.123 0.120 -0.215 0.449 2.560

Altitude 0.139 0.137 -0.041 0.304 9.235
Urbanization 0.571 0.566 0.410 0.724 908.090

Queen Contiguity

Parameter Mean Median
90% HPD Interval

R01 = P (θ∈(0,∞))
P (θ∈(−∞,0]))Lower Upper

Constant 1.873 1.961 -2.081 5.704 4.038
Price -0.877 -0.876 -1.570 -0.200 0.027

Income 0.308 0.298 -0.068 0.701 9.941
Subs. Price 0.117 0.117 -0.276 0.488 2.331

Altitude 0.130 0.135 -0.097 0.391 5.826
Urbanization 0.575 0.566 0.375 0.751 139.840

Rook Contiguity

Parameter Mean Median
90% HPD Interval

R01 = P (θ∈(0,∞))
P (θ∈(−∞,0]))Lower Upper

Constant 1.956 1.965 -2.126 5.662 4.061
Price -0.818 -0.876 -1.567 -0.189 0.027

Income 0.297 0.298 -0.095 0.674 9.834
Subs. Price 0.084 0.117 -0.283 0.482 2.328

Altitude 0.178 0.135 -0.104 0.384 5.775
Urbanization 0.575 0.565 0.377 0.756 124.000

Source: Author’s calculations
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Table 6: Tariff variations due to unification

Location p11 p21
Metropolitan Area -0.33% 8.12%

Rest -17.53% -0.95%

Source: Author’s calculations

Table 7: Equivalent Variation as share of income by Total, Metropolitan Area and Rest

Road Length Contiguity

Equivalent
Mean Median

90% HPD Interval
Variation Lower Upper

M. Area 0.126% 0.141% 0.006% 0.209%
Rest 0.940% 0.655% 0.257% 2.006%
Total 0.874% 0.630% 0.005% 1.913%

Queen Contiguity

Equivalent
Mean Median

90% HPD Interval
Variation Lower Upper

M. Area 0.127% 0.141% 0.005% 0.212%
Rest 0.937% 0.653% 0.256% 2.003%
Total 0.872% 0.628% 0.004% 1.907%

Rook Contiguity

Equivalent
Mean Median

90% HPD Interval
Variation Lower Upper

M. Area 0.127% 0.141% 0.005% 0.212%
Rest 0.936% 0.653% 0.257% 2.000%
Total 0.871% 0.627% 0.005% 1.905%

Source: Author’s calculations

5.2 Figures
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Figure 1: Example of Equivalent Variation with price changes on both tiers, and new and
virtual consumption on the second tier

x̄ xe x1

y0

e(p0, u1)

e(p20, u1)

EV

slope p10

slope p11

slope p20

slope p21

u1

x

xa

Figure 2: Average Annual Electricity Consumption per Household (kWh): Province of
Antioquia (Colombia) in 2005, Stratum One

[26.6, 142.7)
[142.7, 192.4)
[192.4, 238.2)
[238.2, 305.7)
[305.7, 588.9]

Source: Empresas Públicas de Medelĺın
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Figure 3: Local Moran’s I test p-values of Average Annual Electricity Consumption per
Household (kWh): Province of Antioquia (Colombia) in 2005, Stratum One

p > 0.1
p < 0.1
p < 0.05
p < 0.01

Source: Authors’ calculations

Figure 4: Median Equivalent Variation by Municipality

[0%, 0.4%)
[0.4%, 0.6%)
[0.6%, 0.7%)
[0.7%, 1.4%)
[1.4%, 3.3%]

Source: Authors’ calculations

References

Acemoglu, D. (2008). Introduction to Modern Economic Growth. Princeton University Press.

33



Acton, J. P. and Mitchell, B. M. (1983). Welfare analysis of electricity rate changes. RAND

Corporation.

Angrist, J. D. and Pischke, J.-S. (2008). Mostly Harmless Econometrics: An Empiricist’s

Companion. Princeton University Press.

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Springer-Verlag.

Anselin, L. (1990). Some robust approaches to testing and estimation in spatial econometrics.

Regional Science and Urban Economics, 20(2):141–163.

Anselin, L. (2003). Spatial externalities, spatial multipliers, and spatial econometrics. Inter-

national Regional Science Review, 26(2):153–166.

Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical Modeling and Analysis

for Spatial Data. Chapman & Hall / CRC Press.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer-Verlag.

Bernardinelli, L., Clayton, D., and Montomoli, C. (1995). Bayesian estimates of disease maps:

How important are priors? Statistics in Medicine, 14(21-22):2411–2431.

Bernardo, J. (2003). Bayesian Statistics. Technical report, Universidad de Valencia.
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Appendices

A Variable Definitions

Table A.1: Variable definitions and sources

Variable Definition Source

Consumption (x)
Average annual electricity consumption
per household in kilowatts hour (kWh)

EPMa

Price (p) Average annual electricity price in US$ by
kilowatt hour (US$/kWh)

EPM

Income (y) Average annual per capita income in US$ Authors’ calculations

Substitute Average annual price of the substitute
good in US$ by kilowatt hour (US$/kWh)

CREGb

price (ps)

Urbanization (urb) Ratio of urban to total population DANEc

Altitude (alt)
Dummy variable taking on 1 when the
municipality is located less than 1000ms
above sea level

Anuario Estad́ıstico
de Antioquiad

Coverage (EADE)
Dummy variable taking on 1 when munic-
ipality used to be covered by EADE and
0 otherwise

SUIe

Notes: a Empresas Públicas de Medelĺın, b Comisión de Regulación de Enerǵıa y Gas, c Departamento
Administrativo Nacional de Estad́ıstica, d Antioquia’s Statistical Yearbook compiled by the Government

of Antioquia, e Sistema Único de Información
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B Diagnostics

Table B.1: Stationarity and Convergence diagnostics

Road Length Contiguity

Parameter
Heidelberger Heidelberger

Gewekec Rafteryd
(1st Part/p-value)a (2nd Part)b

Constant 0.887 0.064 0.758 1.46
Price 0.923 -0.047 0.820 1.10

Income 0.414 0.035 -0.740 2.74
Subs. Price 0.909 0.067 -0.311 1.11

Altitude 0.581 0.052 -0.515 1.08
Urbanization 0.871 0.024 -0.407 1.05

Queen Contiguity

Parameter
Heidelberger Heidelberger

Gewekec Rafteryd
(1st Part/p-value)a (2nd Part)b

Constant 0.830 0.085 -0.079 2.37
Price 0.142 -0.054 -0.238 1.12

Income 0.578 0.037 -0.399 2.71
Subs. Price 0.530 0.111 -0.450 1.16

Altitude 0.266 0.216 1.083 1.34
Urbanization 0.126 0.013 0.550 1.21

Rook Contiguity

Parameter
Heidelberger Heidelberger

Gewekec Rafteryd
(1st Part/p-value)a (2nd Part)b

Constant 0.604 0.208 -0.930 2.39
Price 0.280 -0.155 -0.967 1.16

Income 0.226 0.095 0.866 2.72
Subs. Price 0.634 0.455 -0.745 1.14

Altitude 0.935 0.356 0.541 1.33
Urbanization 0.894 0.034 0.034 1.24

Notes: a Null hypothesis is stationarity of the chain, b Half-width to mean ratio
(threshold of 0.1), c Mean difference test z-score, d Dependence factor (threshold
of 5)
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