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Motivation for the Reader

Nowadays part of the literature on combustion is so specialized that only
through long study any significant results can be achieved. On the other
hand, another large part of the literature on this subject focuses on devel-
oping tools with direct applications in mind. This document fills this gap
by first presenting combustion as a chemical process, then explaining how
a mathematical model of it is obtained, and finally showing how results in
partial differential equations can be applied to understand properties of the
combustion process being modelled.
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Chapter 1

Introduction

1.1 Combustion

1.1.1 Definition of Combustion

One of the most captivating experiences in childhood is that of contemplat-
ing fire. Fire appears as something entirely different from a solid, a liquid
or a gas. In particular, this may have lead the Greeks to choose fire (to-
gether with earth, air and water) as one of the elements that constitute all
other substances. The fire caused by wood burning is just one instance of
a number of phenomena referred to collectively as combustion phenomena.
A lighted candle, a Bunsen burner, the explosion of gasoline in an internal
combustion engine, a flying rocket, and even iron rusting, are instances of
combustion processes. With the exception of iron rusting, it is natural to
think that these phenomena are somehow variations of the same idea. It
was not until the XVIIIth century that a scientific understanding of what
combustion processes essentially are was achieved. In short, a combustion
process is an exothermic chemical reaction between a compound (called fuel)
and an oxidizer (usually oxigen). Let us consider some examples.

1. One of the first examples of combustion that comes to mind is that
of a lighted candle. Candles are made of wax, and wax is a mixture
of higher alkanes. An alkane is a molecule formed by a number n of
carbon atoms and 2n + 2 hydrogen atoms where n ≥ 1 as shown in
Figure 1.1. An alkane is said to be a higher alkane if n ≥ 3. The
chemical reactions that take place are of the form

2CnH2n+2 + (3n + 1)O2 → 2nCO2 + (2n + 2)H2O + heat (1.1)

1
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Figure 1.1: Propane

We must point out that this chemical equation (as the ones presented
in the following examples) is a vast simplification of the very compli-
cated chemical reactions that are actually taking place.

2. Another familiar combustion process is that of burning wood. The
chemical reaction in this case is, essentially

C6H10O5 + 6O2 → 6CO2 + 5H20 + heat (1.2)

3. An example familiar to all chemistry students is that of a Bunsen
burner. Most Bunsen burners use (gaseous) methane as fuel. Methane
is an alkane having formula CH4. In this case the reaction is

2CH4 + 4O2 → 2CO2 + 4H2O + heat (1.3)

In the following section we will explain this example in some detail.
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4. Very familiar is also the case of the black powder, a solid fuel with
chemical equation

2KNO3 + S + 3C → K2S + N2 + 3CO2 (1.4)

Also, in the following section it will be explained in some detail.

5. There is a type of combustion phenomena, often called slow combus-
tion, of which iron rusting is a particularly important example. In this
case pure, solid iron oxidizes in water through a number of steps. First,
two electrons are taken away from an iron atom due to the presence
of H+ ions

Fe(s) → Fe2+
(aq) + 2e− (1.5)

The electrons that are released flow through the iron metal to posi-
tively charged regions, where they react with oxygen:

4e− + O2(g) + 2H2O(l) → 4OH−
(aq) (1.6)

These two half reactions together give the overall reaction:

Fe(s) +
1
2
O2(g) + H2O(l) → Fe2+

(q) + 2OH−
(aq) (1.7)

Experiences with this process, like in car fenders, tend to show that
Fe+2 is eventually oxidized further to Fe+3 giving the compound
iron(III) oxide (rust):

4Fe2+
(aq) + O2(g) + 4H2O(l) → 2Fe2O3(s,red colour) + 8H+

(aq) (1.8)

All examples before are natural manifestation of combustion. Let us
see two of them a little further.

1.1.2 Examples

Example 1

Bunsen Burner: The device safely burns a continuos stream of a flammable
gas as natural gas or liquified petroleum gas such as propane, butane, or a
mixture of both. The gas flows up through the base through a small hole
at the bottom of the barrel and is directed upward. There are slots on the
side of the tube bottom to admit air into the stream via the venturi effect.



4 CHAPTER 1. INTRODUCTION

The amount of air mixed with the gas affects the completeness of the combus-
tion reaction. Less air yields an incomplete and thus cooler reaction, while a
gas stream well mixed with air provides oxygen in an equimolar amount and
thus a complete and hotter reaction. It is a typical and interesting example
of laminar premixed flames with some simplified mathematical models like
described in [20].

Example 2

Solid fuel (Gunpowder): A more accurate equation for its reaction is

10KNO3 + 3S + 8C → 2K2CO3 + 3K2SO4 + 6CO2 + 5N2 (1.9)

The products of burning do not follow any simple equation, it generates 55.91
percent solid products: potassium carbonate, potassium sulfate, potassium
sulfide, sulfur, potassium nitrate, potassium thiocyanate, carbon, ammo-
nium carbonate. 42.98 percent gaseous products: carbon dioxide, nitrogen,
carbon monoxide, hydrogen sulfide, hydrogen, methane, 1.11 percent wa-
ter. All those products that contain hydrogen are probably contamination,
because none of the reactants contains any hydrogen. A more complete
description of burning of solids is given in [20].

1.2 Combustion Physics

As a definition for Combustion, it can be said that is a rapid oxidation
generating heat, or both light and heat; also, a slow oxidation accompanied
by relatively little heat and no light. Most practical combustion devices
belong to the realm of rapid oxidation portion; in this definition, the im-
portance of chemical reactions to combustion, is emphasized. Combustion
transforms energy stored in chemical bonds to heat that can be utilized in
a variety of ways. Combustion can occur in either a flame or non flame
mode, and flames, in turn, are categorized as being either premixed flames
or non premixed (diffusion) flames. The two classes of flames, premixed
and non-premixed, are related to the state of the reactants, as suggested by
their names. In a premixed flame, the fuel and the oxidizer are mixed at
the molecular level prior to the occurrence of any significant chemical reac-
tion. The spark-ignition engine is an example where premixed flames occur.
Contrarily, in a diffusion flame, the reactants are initially separated, and
reaction occurs only at the interface between the fuel and oxidizer, where
mixing and reaction both take place. An example of a diffusion flame is a
simple candle. In practical devices, both types of flames may be present in
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various degrees. Diesel-engine combustion is generally considered to have
significant amounts of both premixed and non-premixed or diffusion burn-
ing. The term diffusion applies strictly to molecular diffusion of chemical
species, i.e., fuel molecules diffuse toward the flame from one direction while
oxidizer molecules diffuse toward the flame from the opposite direction. In
turbulent non-premixed flames, turbulent convection mixes the fuel and air
together on a macroscopic basis. Molecular mixing at the same scales, i.e.,
molecular diffusion, then completes the mixing process so that chemical re-
action can take place. It is convenient to refer a flame as a self-sustaining
propagation of a localized combustion zone at subsonic velocities; and it is
convenient to divide a flame into two zones: the preheat zone, where lit-
tle heat is released; and the reaction zone, where the bulk of the chemical
energy is released. At atmospheric pressure, the flame thickness is quite
thin, of the order of millimeters. It is useful to divide the reaction zone
further into a region of very fast chemistry followed by a much wider region
of slow chemistry. The destruction of the fuel molecules and the creation
of many intermediate species occur in the fast-chemistry region. This re-
gion is dominated by bimolecular reactions. At atmospheric pressure, the
fast-reaction zone is quite thin, typically less than a millimeter. Because
this zone is thin, temperature gradients and species concentration gradients
are very large. These gradients provide the driving forces that cause the
flame to be self-sustaining: the diffusion of heat and radical species from
the reaction zone to the preheat zone. In the secondary reaction zone, the
chemistry is dominated by three-body radical recombination reactions, and
the final burnout of CO via CO+OH → CO2 +H. This secondary reaction
zone may extend several millimeters in a 1-atm flame. The typical Bunsen-
burner flame is a dual flame: a fuel-rich premixed inner flame surrounded
by a diffusion flame. The secondary diffusion flame results when the carbon
monoxide and hydrogen products from the rich inner flame encounter the
ambient air. The shape of the flame is determined by the combined effect
of the velocity profile and the heat losses to the tube wall.

Several zones of a candle flame can be seen with the eye. At the bot-
tom is a region that gives off blue light. This light is actually molecular
emission from gaseous carbon, C2. Further up the flame is a region that is
substantially opaque and which gives off yellow light. This is known as the
incandescent region, and is where hot soot particles glow, giving off light
like the filament of a light bulb. The inside part of the flame, near the wick,
is oxygen-deficient, and most of the reactions that occur are heat-induced
fragmentations and rearrangements. In the outer regions, where oxygen can
enter from the surrounding air (oxygen attack), the fragments combine with
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oxygen, eventually forming water and carbon dioxide, these concepts are
amplified in [8] and [3].

Many factors that affect the burning of a candle. Most of them are of
the type that are difficult to vary, such as the air pressure, concentration of
oxygen, thermal conductivity of air, and the buoyancy of the hot reaction
products. One factor that is easy to vary, however, is wind.

The development to a solid model is inspired on a very useful case as is
the fuel used on the STS (Space Transportation System or Space Shuttle)
on its SRB (Solid Rocket Booster) that is vital on the initial phase.

1.3 Combustion Chemistry

It is known that one of the most important objects relating nature and
mankind is fire. Broadly speaking there are two types of fire, flaming and
smoldering fires. Flaming fires involve the rapid oxidation of a fuel with
associated flame, heat, and light. The flame itself occurs within a region
of gas where intense exothermic reactions are taking place. An exothermic
reaction is a chemical reaction that takes place within a substance whereby
heat and energy are released as the substance change to a simpler chemical
form. As chemical reaction occur within the fuel being burned, light is usu-
ally emitted as photons are released by the oxidation of the fuel. Depending
upon the specific chemical and physical change taking place within the fuel
the flame may or may not emit light. The visible flame has no mass; what
it is seen as visible flame is actually energy (photons) being released in the
form of light by the oxidation of the fuel. The color of the flame is dependent
upon the energy level of the photons emitted. Lower energy levels produce
colors toward the red end of the light spectrum while higher energy levels
produce colors toward the blue end of the spectrum. The hottest flames are
white in appearance. A smoldering fire is a flameless form of combustion,
deriving its heat from oxidation occurring in the surface of a solid fuel.

A flame is then, the visible (light-emitting) part of a fire. The color and
temperature of a flame are dependent of the type of fuel involved in the
combustion. When a lighter is held to a candle, the applied heat causes the
fuel molecules in the wick to vaporize. In this state they can readily react
with the oxygen in the air, which gives off enough heat in the subsequent
exothermic reaction to vaporize yet more fuel, thus sustaining a consistent
flame. Sufficient energy in the flame will excite the precombusted products,
which results in the emission of visible light. As the combustion tempera-
ture of a flame increases, so does the average energy of the electromagnetic
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radiation given off by the flame. The common distribution of a flame un-
der normal gravity conditions depends on convection, as soot (described in
[19]) tends to rise to the top of a flame, making it yellow. In conditions
of zero gravity, convection no longer occurs and the flame becomes spheri-
cal, with a tendency to become bluer and more efficient. Since combustion
problems requiring theoretical analysis are primarily concerned with the
flow of reacting and diffusing gases, it must be understand -in addition to
chemical thermodynamics- the conservation equations of fluid dynamics, in-
cluding transport properties and chemical kinetics; I mean, understanding
combustion requires a combined knowledge of thermodynamics, heat and
mass transfer, and chemical reaction rate theory (chemical kinetics). A re-
view of those aspects are presented on the specialized book as [22], [20] and
[14].

Combustion chemistry is very complicated! Many reactions are occur-
ring sequentially and simultaneously. Scientists and engineers do not fully
understand the chemistry and mechanics of a candle flame (or other types
of flames). The result is the development of models on which the processes
are studied, like the model shown in [6].

In general, the fate of the wax molecules is this: the heat of the can-
dle flame first melts the wax, and it rises up the candle wick by capillary
action. Farther up the wick, the greater heat vaporizes the wax molecules,
which move from the wick into the surrounding space. The heat of the
flame and reactive molecules (free radicals) in the flame break apart the
wax molecules, in particular stripping hydrogen atoms from the carbon-
chain backbone. Some of the carbon chains fragment into gaseous carbon
(C2) and into small (typically two-carbon atom containing) molecules and
molecular fragments. The hydrogen atoms stripped from the wax molecules
eventually combine with oxygen atoms from the air to form water molecules.
The carbon atoms eventually combine with oxygen to form carbon monox-
ide and carbon dioxide, but first many of them combine to form very large
(as far as molecules are concerned) clumps of carbon-rich solid material,
already defined as soot. Some of this soot burns to make carbon dioxide in
the candle flame, and sometimes some of it escapes the flame.

As a first step in analyzing the combustion process, we will derive the
mathematical model from basic conservation principles.
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Chapter 2

Mathematical Model

2.1 State of the System

Let Ω be an open set in R3 where a number Ns of species are moving
and reacting with each other according to Nr chemical reactions. At any
particular instant, this system is completely determined by the following
collection of real and vector valued functions defined on Ω:

1. Temperature T : Ω × [a, b] → R. T (x, y, z, t) is the temperature at
point (x, y, z) at instant t.

2. Velocity v : Ω× [a, b] → R3. v(x, y, z, t) is the velocity vector of a small
volume of the mixture of species around the point (x, y, z) at instant
t.

3. Pressure p : Ω× [a, b] → R.

4. Density ρ : Ω × [a, b] → R. ρ(x, y, z, t) is the mass of mixture present
in a small volume around (x, y, z) at instant t, divided by that volume.

5. Specific Enthalpy h : Ω× [a, b] → R. h(x, y, z, t) is the enthalpy of the
mixture contained in a small volume around (x, y, z) at time t, divided
by the mass of mixture in that volume.

6. Mass fractions yi : Ω× [a, b] → [0, 1], i = 1, . . . , Ns. yi(x, y, z, t) is the
mass of species i present in a small volume around (x, y, z) at instant
t, divided by the mass of mixture present in that same volume. By
definition,

∑Ns
i=1 yi(x, y, z, t) = 1 for every (x, y, z, t).

9
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The minimum set of necessary properties is called the state of the system,
and it is assumed that the evolution of the system in time is determined by
its state at some initial time t = t0, in combination with outside influences,
called boundary conditions. In the model used, the state is given by tem-
perature, velocity, pressure and the first (Ns − 1) mass fractions.
The density ρ can be derived from the state, using the equation of state.
This is given by

ρ =
pM

R0T
, (2.1)

where R0 is the universal gas constant and M is the average molecular mass
(the reciprocal weighted average of the specific molecular masses Mi of the
species involved)

M =
( Ns∑

i=1

yi

Mi

)−1

(2.2)

The pressure dependence of the density can be ignored (laminar combus-
tion), so almost the same results are obtained when the equation of state
(2.1) is replaced by

ρ =
p0M

R0T
, (2.3)

with p0 the ambient pressure acting on the system. This equation of state
follows from the so-called combustion or isobaric approximation, which is
valid when the velocity v is much smaller than the speed of sound c. Here
the pressure is taken to be constant, but not in the momentum equations as
will be see. Other property which can be derived from the state is called the
specific enthalpy h, being the sum of the chemical and thermal enthalpy. It
will also be treated later in this section.
The Reynolds’ Transport Theorem as shown in [4] is used to derive the
conservation laws for a flowing gas. To formulate the theorem, a material
volume V(t) is considered, which moves through the domain with velocity
v(x, y, z, t) in such a way, that it contains the same gas at all times. Now let
b(x, y, z, t) be the density of a certain property (mass, enthalpy, momentum)
per unit mass at x, y, z and at time t. The total amount B of this property,
contained in V(t), is then equal to

B(t) =
∫

V(t)
ρb dV. (2.4)
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The theorem now states, as shown in [4] that the material derivative of B
is given by

dB

dt
=

∫

V(t)

∂(ρb)
∂t

dV +
∮

∂V(t)
ρbv · n dS, (2.5)

with n the outward unit vector.
This derivative can also be equated to the difference of the total production
inside the volume V(t) on one hand and the net transfer out of the volume on
the other hand. Therefore, if s(x, y, z, t) denotes the production intensity of
the property per unit of time per unit volume, and if fb is the flux (transport
in and out of the material volume) of the property b, per unit area per unit
time, then the time derivative of B is also equal to

dB

dt
=

∫

V(t)
s dV −

∮

∂V(t)
fb · n dS (2.6)

The two expressions must be identical, so
∫

V(t)

∂(ρb)
∂t

dV +
∮

∂V(t)
ρbv · n dS =

∫

V(t)
s dV −

∮

∂V(t)
fb · n dS (2.7)

Applying Gauss’ theorem we obtain
∫

V(t)

(∂(ρb)
∂t

+∇ · (ρbv)
)

dV =
∫

V(t)

(
s−∇ · fb

)
dV (2.8)

Since (2.8) holds for arbitrary V(0), and arbitrary t, we conclude that the
integrands should be identical, obtaining in this way the so called generic
conservation law

∂(ρb)
∂t

+∇ · (ρbv) = s−∇ · fb (2.9)

We can now apply (2.9) to several properties of the reacting mixture, to
derive the conservation equations which govern the evolution of the system.
A detailed general case may also be studied in [4].

2.1.1 Conservation of Mass

Mass can never be created or destroyed. Therefore, by setting b = 1 and
fb = 0 in the conservation law (2.9), we obtain the equation describing
conservation of mass (see [21])

∂ρ

∂t
+∇ · (ρv) = 0 (2.10)
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This can also be expressed for each species i by

∂

∂t
(ρyi) +∇ · (ρyivi) = ṙi (2.11)

where ṙi is the rate of production (or consumption) for each species i. As
mentioned in [2], in a closed system, it is necessary that

∑N
i=1 ṙi = 0. The

equation for the total conservation of mass is obtained by summing the
equations in (2.11), resulting again in

∂ρ

∂t
+∇ · (ρv) = 0

2.1.2 Conservation of Momentum

Let us set b := v = (u, v, w)T , so we apply the conservation law to momen-
tum. The velocity is a vector field and this increases the notation of the
conservation law (2.9). We need to write it for each of the velocity com-
ponents. For that purpose, let sj , (j = x, y, z) denote the production of
momentum in the directions x, y, z, and fj the corresponding momentum
fluxes. Then we get

∂ρu

∂t
+∇ · (ρuv) = sx −∇ · fx,

∂ρv

∂t
+∇ · (ρvv) = sy −∇ · fy,

∂ρw

∂t
+∇ · (ρwv) = sz −∇ · fz,

which can be abbreviated using the tensor F, and the tensor product ⊗:

∂ρv

∂t
+∇ · (ρv⊗ v) = s−∇ · F (2.12)

where for any vectors a and b in Rn, a ⊗ b is given by the n × n matrix
[aibj ].
In a gas flame, the cause for the change of momentum are the gravitational
force given by ρg, which appears in the equation as a source term, and those
forces which transfer momentum from one fluid element to another. These
forces are pressure forces ∇ · Fp, and viscous forces ∇ · Fv. Pressure forces
work with equal strength in all directions, and the only form for this type
of tensor is given by Fp = pI. The viscous forces are caused by velocity
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gradients, and under assumptions of newtonian behavior and isotropy, are
given by

Fv = −µ(∇v + (∇v)T − 2
3
I(∇ · v)). (2.13)

with µ a scalar named the dynamic viscosity. Thus, the momentum equation
is

∂ρv

∂t
+∇ · (ρv⊗ v) = ρg −∇p +∇ · (µ(∇v + (∇v)T − 2

3
I(∇ · v))) (2.14)

2.1.3 Conservation of Species

An effective approach for a model of transfer of mass of each species between
fluid elements, is through the generalized Law of Fick, which states that the
transfer of mass of a species depends linearly on, and is directed in opposite
direction of, the concentration gradient. So, according to [21]

fi = −ρD∇yi, (2.15)

with i = 1, ..., Ns − 1 and D the mixture averaged mass coefficient. Subse-
quent substitution into (2.9) leads to

∂ρyi

∂t
+∇ · (ρvyi) = ∇ · (ρD∇yi) + si, (2.16)

with i = 1, ..., Ns−1 and where si is the source term or chemical production
term. Equation (2.16) is used to describe the behavior of the first (Ns − 1)
species, as the last one is determined by these. The mass transfer flux of
species number Ns can be derived from other fluxes, because there is no
transfer of totalmass by diffusion, yielding

fNs = −
Ns−1∑

i=1

fi. (2.17)

2.1.4 Conservation of Energy

Since no energy is created or destroyed in a gas flame, is logical to apply
the conservation law to the specific energy E of the gas. When the kinetic
energy is very small relative to the internal energy (heat, chemical energy),
we may consider only the specific internal energy e. Energy is also used for
the expansion of the gas when the temperature rises, and some inconvenient
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terms are involved. Instead, it is more convenient to consider the specific
enthalpy h, given by

h := e +
p

ρ
. (2.18)

The enthalpy is a function of temperature and mass fractions, and takes the
form

h =
Ns∑

i=1

yihi. (2.19)

here hi is called the specific enthalpy of species i, and is given by

hi = h0
i +

∫ T

T0

cpi(τ)dτ, (2.20)

where h0
i is called the specific enthalpy of formation at the reference tem-

perature To, and cpi is the specific heat of the i-th species.
Enthalpy is not always conserved, because viscosity and changes in the

ambient pressure may change it. In a gas flame, these terms are found to be a
lot smaller than the chemical and thermal terms, and they can be neglected.
Thus the generic conservation law (2.9) can be applied to the enthalpy. To
do so, it is needed a model for transfer of enthalpy between fluid elements.
The enthalpy transfer mechanisms are, the transfer due to mass diffusion,
for which there is a model; and the heat conduction, for which the Fourier
law is applied where the heat conduction depends linearly on, and is directed
in the opposite direction of the temperature gradient. Then we have

fT = −λ∇T, (2.21)

where λ is the thermal conductivity of the gas mixture. The mass diffusion,
for which the model is given by (2.15) and (2.17), yields the term

fm =
Ns∑

i=1

hifi = −
Ns−1∑

i=1

h∗i ρD∇yi. (2.22)

where h∗i := hi − hNs is the relative enthalpy of the species number i. Sub-
stitutions into (2.9) leads to the Enthalpy Equation

∂ρh

∂t
+∇ · (ρvh) = ∇ · (λ∇T ) +

Ns−1∑

i=1

∇ · (h∗i ρD∇yi). (2.23)
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Substitution of (2.19) and (2.16), and application of the chain and product
rules for differentiation, produces the Temperature Equation

cp
∂ρT

∂t
+ cp∇ · (ρvT ) = ∇ · (λ∇T )−

Ns∑

i=1

cpifi · ∇T −
Ns−1∑

i=1

h∗i si, (2.24)

where the mixture average specific heat cp is given by

cp :=
Ns∑

i=1

cpiyi. (2.25)

2.2 Reaction Terms

For a given gas flame, the reactions from 1 to Nr are considered or play
a role. The model itself can be of the style of one step and of the style
skeletal. For an arbitrary reaction j, rj denotes the reaction rate, that is the
number of times in moles that the reaction takes place per unit volume per
unit time; in this case the chemical production term si is expressed by

si = Mi

Nr∑

j=1

νijrj , (2.26)

where νij is the stoichiometric coefficient or the number of molecules of
species number i which are produced every time reaction j takes place.
After considering a collision model the reaction rates are obtained. For the
reaction,

A1 + · · ·+ Api → B1 + · · ·+ Bqj , (2.27)

it is assumed that the reaction can only take place if a molecule of every
species A1 through Apj is present in a small volume ∆V in which they
collide.The probability of this to happen is proportional to the concentration
of all the participating species (mj1 through mjpi), so

rj = kj(T )ρpi
pj∏

i=1

ymji, (2.28)

where kj(T ) is a temperature dependent specific reaction rate coefficient. As
argued by Arrhenius in 1889, an appropriate representation is

kj(T ) = Bje
−Ej/RT , (2.29)
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where the frequency factor Bj and the activation energy Ej do not depend
on the temperature. When the reactions behavior cannot be represented
correctly in that way, it is used a slightly modified form of the reaction,
chosen according to

kj(T ) = AjT
αje−Ej/RT . (2.30)

Then, the expression for the chemical production term si is:

sT := −
Ns−1∑

i=1

h∗i si. (2.31)

The model used can be summarized as:

∂ρ

∂t
+∇ · (ρv) = 0 (2.32)

∂ρv

∂t
+∇ · (ρv⊗ v) = ρg −∇p +∇ · (µ(∇v + (∇v)T − 2

3
I(∇ · v))) (2.33)

∂ρyi

∂t
+∇ · (ρvyi) = ∇ · (ρD∇yi) + si, i = 1, · · · , Ns − 1, (2.34)

cp
∂ρT

∂t
+ cp∇ · (ρvT ) = ∇ · (λ∇T ) +

Ns−1∑

i=1

(cpi − cpNs)ρD∇T + sT . (2.35)

These equations, are equivalent to the following set mentioned in [2] as:

∂ρ

∂t
+∇ · (ρv) = 0 (2.36)

ρ(
∂v

∂t
+ v · ∇v) = −∇p + µ(∆v +

1
3
∇(∇ · v)) (2.37)

ρ(
∂yi

∂t
+ v · ∇yi) = ∇ · (ρD∇yi) + mi(λi − νi)B0e

−E/RT
N∏

j=1

(
ρyi

mj
)νj (2.38)

ρCv(
∂T

∂t
+ v · ∇T ) =

∇ · (k∇T )− p(∇ · v) + 2µ[−1
3
(∇ · ∇v)2 +D : ∇⊗ v]

−
N∑

i=1

himi(λi − νi)B0e
−E/RT

N∏

j=1

(
ρyj

mj
)νj (2.39)
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p = ρRT. (2.40)

Here ∇⊗ v should be understood as

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
⊗ (u, v, w) =




∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z




(2.41)

and D = 1
2

[∇⊗v+(∇⊗v)T
]
. The symbol “ : ” denotes the dot product of

two matrices. This is defined for two r × s matrices A = [aij ] and B = [bij ]
by

A : B =
∑

i,j

aijbij (2.42)

2.3 Conditions for the Model

The single one-step irreversible reaction that we will consider is of the form:

νF F + νOO → λP P,

where F represents fuel, O represent oxidant, P represents the product, and
where νF , νO, and λP are stoichiometric constants. This reaction involves
three mass fractions: yF , yO, and yP . If both fuel and oxidant are present in
correct proportion, then both are entirely consumed in the process. In this
case the initial values yF0 and yO0 are of the same order of magnitude, so
the reaction rate is strongly dependent on both mass fractions. However, if
yF0 À yO0 , then the reaction rate is weakly dependent on yF since yF does
not change much. Since yF is approximately constant, we ignore its species
equation and consider only the single species equation for yO.

Note that the stoichiometric mixture of fuel and oxidant satisfies yO
yF

.=
νO
νF

. Choose m = νF + νO, λO = 0, h = hO, y = y0, and

B = B0ν0m0

(νF

ν0

)νF

m−νO
0 m−νF

F (2.43)

then the system becomes

ρt +∇ · (ρv) = 0 (2.44)

ρ(vt + v · ∇v) = −∇p + µ[∆v +
1
3
∇(∇ · v)] (2.45)
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ρ(yt + v · ∇y) = ∇ · (ρD∇y)−Bρmyme−
E

RT (2.46)

ρCv(Tt + v · ∇T ) = ∇ · (k∇T )− p(∇ · v)

+ 2µ[D : ∇⊗ v− 1
3
(∇ · v)2]

+ Bhρmyme−
E

RT (2.47)

p = ρRT. (2.48)

The combustion model just mentioned can be nondimensionalized in a
rational manner in order to elucidate the significant parameters. Assume
initially that a reactive, viscous, heat conducting, compressible gas is in
equilibrium state defined by the dimensional quantities p0 = p(x, 0), ρ0 =
ρ(x, 0), T0 = T (x, 0), y0 = y(x, 0), and v0 = v(x, 0).

At time t = 0, a small initial disturbance is created on a length scale
L. Define x = x/L as the new position vector. Let tR be a reference time.
Let us define t̄ = t/tR as a new time scale. Nondimensionalize the system
of variables: p̄ = p/p0, T = T/T0, ȳ = y/y0, and v=v/(L/TR). Also
nondimensionalize the quantities: µ̄ = µ/µ0, D = D/D0, Cp = Cp/Cp0,
Cv = Cv/Cv0, k̄ = k/k0, and K = K/K0, where K = k/(ρCp) is the
thermal diffusivity.
In the scaling of the system it will be used the following quantities: γ =
Cp0/Cv0, the gas parameter; ε = RT0/E, the non dimensional inverse of the
activation energy; Pr = Cp0µ0/k0, the Prandtl number; the Lewis number
Le = D0/K0; the initial sound speed C0 =

√
γRT0; the acoustic time scale

tA = L/C0; the conduction time scale tC = L2/K0; and the non dimensional
heat of reaction h̄ = hy0/(Cv0T0). Substituting these into the equations
above and dropping the bar notation gives us the non dimensional model

ρt +∇ · (ρv) = 0 (2.49)

ρ(vt + v · ∇v) = − 1
γ

(
tR
tA

)2

∇p + Pr

(
tR
tC

)
µ

[
∆v +

1
3
∇(∇ · v)

]
(2.50)

ρ(yt + v · ∇y) = Le

(
tR
tC

)
∇ · (ρD∇y)− tRBρmyme−1/εT (2.51)
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ρCv(Tt + v · ∇T ) =

γ

(
tR
tC

)
∇ · (k∇T )− (γ − 1)p(∇ · v)

+ 2µγ(γ − 1)Pr

(
t2A

tRtC

)[
D : ∇⊗ v− 1

3
(∇ · v)2

]

+ tRBhρmyme−1/εT (2.52)

p = ρT. (2.53)

2.4 Solid Fuel Model and the Gelfand Problem

If the single chemical species is a solid in a bounded container Ω ⊂ R3, then
v = 0, ρ = 1, γ = 1, and the ratio tR/tC = O(1). Thus the last group of
equations reduces to the reaction-diffusion system which can written as





Tt −∆T = εδymexp(T−1
εT )

yt − β∆y = −εδΓymexp(T−1
εT )

(2.54)

with (x, t) ∈ Ω× (0,∞) and initial-boundary conditions




T (x, 0) = 1, y(x, 0) = 1, x ∈ Ω

T (x, t) = 1, ∂y(x,t)
∂η(x) = 0, (x, t) ∈ ∂Ω× (0,∞)

(2.55)

where β ≥ 0, Γ > 0, and δ > 0 is the Frank-Kamenetski parameter. For
all fuels of interest, the parameter ε is assumed small; using the method of
activation energy asymptotics according to [22] and [9], and letting T = 1+εθ
and y = 1 − εc be first order approximations, IBVP (2.54 - 2.55) can be
written as 




θt −∆θ = δ(1− εc)mexp( θ
1+εθ )

ct − β∆c = δΓ(1− εc)mexp( θ
1+εθ )

(2.56)

with (x, t) ∈ Ω× (0,∞), and initial-boundary conditions




θ(x, 0) = 0, c(x, 0) = 0, x ∈ Ω

θ(x, t) = 0, ∂c(x,t)
∂η(x) = 0, (x, t) ∈ ∂Ω× (0,∞)

(2.57)
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For ε ¿ 1, the activation energy method decouples (2.56) and it is only
necessary to consider the solid fuel ignition model

θt −∆θ = δeθ, (x, t) ∈ Ω× (0,∞) (2.58)

with initial-boundary conditions




θ(x, 0) = 0, x ∈ Ω

θ(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)
(2.59)

and the associated steady-state model or Gelfand original problem; see [9].



−∆ψ = δeψ, x ∈ Ω

ψ(x) = 0, x ∈ ∂Ω
(2.60)



Chapter 3

Existence on General
Domains

In this chapter we will present a number of results concerning the existence
of solutions to two generalizations of Gelfand’s problem (2.60). The chap-
ter is organized as follows. We begin by defining a first generalization of
Gelfand’s problem and stating an existence result based on degree theory.
Next we define a second generalization of Gelfand’s problem, which is much
closer than the first one to the original Gelfand’s problem. We present
various results concerning the existence of solutions for this problem. In
this chapter we essentially follow reference [2]. Nevertheless, we made the
following contributions to the text, in order to make it more complete and
accesible to the reader. Theorem 8 is included and a reference for consulting
its proof is given. Remark 10 is included in order to clarify the statement
of Lemma 9. A mistake in the statement of Theorem 12 was corrected.
Remark 13 is included to point out the role played by the consideration of
the absolute maximum of function m/f0(m) in Theorem 12. The statement
of Theorem 14 was corrected and Appendix A was written with the pur-
pose of explaining the precise meaning of some of the notions that appear in
its formulation. Furthermore, the proof of this theorem was corrected and
completed accordingly.

3.1 Existence of solutions for a first generalization
of Gelfand’s problem

Let γ be a real number in the interval (0, 1] and let Ω be an open, connected
and bounded subset of Rn such that for each x = (x1, . . . , xn) ∈ ∂Ω there

21
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exist:

1. an open ball Bx centered at x,

2. an index 1 ≤ i ≤ n,

3. a function hx : Rn−1 → R in C2,γ(Rn−1) (see section C for the neces-
sary definitions), with

∂Ω ∩Bx = {z ∈ Bx : zi = hx(z1, . . . , zi−1, zi+1, . . . , zn)} (3.1)

and, either

Ω ∩Bx = {z ∈ Bx : zi > hx(z1, . . . , zi−1, zi+1, . . . , zn)} (3.2)

or

Ω ∩Bx = {z ∈ Bx : zi < hx(z1, . . . , zi−1, zi+1, . . . , zn)} (3.3)

Let f be a function in C0,γ
(

Ω× R )
and θ : ∂Ω → R a continuous function.

Consider the boundary value problem



−∆u = f(x, u), x ∈ Ω

u(x) = θ(x), x ∈ ∂Ω
(3.4)

Remember that ∆u is called the Laplacian of u, and it is defined as the real
valued function

∆u(x) =
n∑

i=1

∂2u

∂x2
i

(x)

for each x ∈ Ω. By a solution to this BVP we mean a function u ∈ C0
(

Ω
)

with u|Ω ∈ C2(Ω), satisfying the two requirements in (3.4), that is,




−∆u(x) = f(x, u(x)), x ∈ Ω

u(x) = θ(x), x ∈ ∂Ω
(3.5)

In the sequel problem (3.4) will be referred to as the first generalization of
Gelfand’s problem. The following is a key concept for the existence theory
of this problem.
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Definition 3 A function g ∈ C0
(

Ω
)

with g|Ω ∈ C2( Ω ) is said to be a
lower solution of (3.4), if




−∆g(x) ≤ f(x, g(x)), x ∈ Ω

g(x) ≤ θ(x), x ∈ ∂Ω
(3.6)

A function h ∈ C0
(

Ω
)

with h|Ω ∈ C2(Ω) is said to be an upper solution
of (3.4), if 



−∆h(x) ≥ f(x, h(x)), x ∈ Ω

h(x) ≥ θ(x), x ∈ ∂Ω
(3.7)

The following is the fundamental existence result for problem (3.4). A proof
of this result, based on degree theoretic methods, can be found in [17].

Theorem 4 (Existence result for the first generalization of Gelfand’s prob-
lem) If problem (3.4) admits a lower solution g, and an upper solution h,
such that g(x) ≤ h(x) for each x ∈ Ω, then there exists a solution u such
that g(x) ≤ u(x) ≤ h(x) for each x ∈ Ω.

3.2 Existence of solutions for a second generaliza-
tion of Gelfand’s problem

Let us consider the problem



−∆u = λF (x, u), x ∈ Ω

u = 0, x ∈ ∂Ω
(3.8)

where F ∈ C0,γ
(

Ω× R )
with F (x, u) ≥ 0 for every (x, u) ∈ Ω× R and λ

is a fixed real number. Notice that this problem is also a generalization of
Gelfand’s problem. We will denote it by P(F,λ) and refer to it as the second
generalization of Gelfand’s problem. We remark that this generalization is
much closer to the original Gelfand problem than the first one. If we fix
F but let λ vary over the reals we obtain a family of problems which we
denote by P(F, · ). Due to the physical interpretation of u in the steady state
model as T−1

ε where T is the temperature function and ε is some positive
number, on Ω , for our purpose it is important only to study the question
of existence of nonnegative solutions to problem (3.8) corresponding to the
requirement that T is greater than or equal to the standard value 1 . The
following definitions and results address this question.
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Lemma 5 If λ ≥ 0, then the function g ≡ 0 is a lower solution for problem
P(F,λ).

Proof. Observe that g ≡ 0 satisfies −∆g(x) = 0 ≤ λF (x, 0) = λF (x, g(x))
because λ ≥ 0 and F is a nonnegative function. Clearly g(x) ≤ 0 for each
x ∈ ∂Ω.

Definition 6 (Spectrum of the second generalization of Gelfand’s problem)
Fix F ∈ C0,γ

(
Ω× R )

with F (x, u) ≥ 0 for every (x, u) ∈ Ω× R. The set
ΣF formed by those λ ∈ R such that the corresponding problem P(F,λ) has
at least one nonnegative solution, is called the spectrum of problem P(F,·).

Lemma 7 (Connectedness of ΣF∩[0,∞)) If λ1 ∈ ΣF∩(0,∞), then [0, λ1] ⊂
ΣF .

Proof. Let λ ∈ [0, λ1]. We need to see that problem P(F,λ) admits a
nonnegative solution. Since λ ≥ 0, Lemma 5 says that g ≡ 0 is a lower
solution to P(F,λ). Let h be a nonnegative solution to problem P(F,λ1). Such
solution exists because λ1 ∈ ΣF . Let us see that h is an upper solution
to problem P(F,λ). In fact, −∆h(x) = λ1F (x, h(x)) ≥ λF (x, h(x)) for each
x ∈ Ω, and since h(x) = 0 for each x ∈ ∂Ω, we have in particular that
h(x) ≥ 0 for each x ∈ ∂Ω. We can now apply Theorem 4 obtaining the
existence of a solution u to problem P(F,λ) such that 0 ≤ u(x) ≤ h(x) for
each x ∈ Ω. In particular, u is a nonnegative solution for problem P(F,λ)

and therefore λ ∈ ΣF .
The following lemma gives an upper bound for the set ΣF . Its proof

requires the following maximum principle.

Theorem 8 (Strong maximum/minimum principle) Let Ω be a bounded
connected open set in Rn and u ∈ C0

(
Ω

)
with u|Ω ∈ C2( Ω ). The

following hold:

1. If ∆u(x) ≥ 0 for each x ∈ Ω then u attains the value M := maxx∈Ω u(x)
at some point in ∂Ω, and if u attains the value M at some point in Ω,
then u is a constant function.

2. If ∆u(x) ≤ 0 for each x ∈ Ω then u attains the value m := minx∈Ω u(x)
at some point in ∂Ω, and if u attains the value m at some point in Ω,
then u is a constant function.

The proof of this fundamental theorem is presented in [5].
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Lemma 9 (Upper bound for ΣF in terms of first eigenvalue of related linear
problem) Assume that there exist functions f0, r ∈ C0,γ

(
Ω

)
satisfying that

f0(x) > 0 and r(x) > 0 for every x ∈ Ω, such that

F (x, u) ≥ f0(x) + r(x)u (3.9)

for each (x, u) ∈ Ω× [0,∞). Then problem P(F,λ1) does not admit any
nonnegative solution for λ1 ≥ λ0(r), where λ0(r) is the smallest value of λ
such that problem




−∆u = λr(x)u, x ∈ Ω

u = 0, x ∈ ∂Ω
(3.10)

admits a nontrivial (i.e. not identically zero) solution u ∈ C0
(

Ω
)

with
u|Ω ∈ C2( Ω ).

Remark 10 If we let v(x) = r(x)u(x) then problem (3.10) becomes




Lv = λv, x ∈ Ω

v = 0, x ∈ ∂Ω
(3.11)

where Lv = −∑n
i=1 s(x)vxixi −

∑n
i=1 2sxi(x)vxi − (

∑n
i=1 sxixi(x))v with

s(x) = 1/r(x). Since r is continuous and positive on the compact set Ω,
there is an M > 0 such that 0 < r(x) < M for every x ∈ Ω and there-
fore 1/M < s(x) for every x ∈ Ω. Since for each x ∈ Ω the diagonal
matrix (s(x), . . . , s(x)) is symmetric, positive definite, and has s(x) as its
unique eigenvalue, we can conclude that L is an elliptic operator, because
s(x) > 1/M > 0 for each x ∈ Ω. For problems of the form (3.11) with
L an elliptic operator, the set of λ ∈ R for which there exists a nontrivial
solution is called the spectrum of L and it is known to be a set of the form
λ0 < λ1 < λ2 < . . . and that there exists a positive ω solution to prob-
lem (3.11) with λ = λ0. This solution ω is regular enough so that Green
identities apply.

Proof. We begin the proof by observing that λ0(r) > 0. For if λ0(r) ≤ 0
then there would be a function u ∈ C0

(
Ω

)∩C2( Ω ) with u(x) ≥ 0 for each
x ∈ Ω, u(x0) 6= 0 for some x0 ∈ Ω, and satisfying −∆u(x) = λ0(r)r(x)u(x)
for each x ∈ Ω and u(x) = 0 for each x ∈ ∂Ω. But since r(x) > 0 for each
x ∈ Ω, we have that λ0(r)r(x)u(x) ≤ 0 for each x ∈ Ω. This implies that
∆u(x) ≥ 0 for each x ∈ Ω. Applying the maximum principle stated above
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(Theorem 8) to u we conclude that u attains its absolute maximum at some
point x0 ∈ ∂Ω. But the fact that u vanishes on ∂Ω allows us to infer that
u(x) ≤ 0 for each x ∈ Ω. The latter conclusion contradicts the assumptions
that u(x) ≥ 0 at each x ∈ Ω and that u does not vanish everywhere in Ω.

Let h be a nonnegative solution to problem P(F,λ1) with λ1 ≥ λ0(r). Then

−∆h(x) = λ1F (x, h(x)) ≥ λ1f0(x) + λ1r(x)h(x) (3.12)

for each x ∈ Ω, and h(x) = 0 for each x ∈ ∂Ω. Also, the function g ≡ 0
is clearly a solution to problem P(F,λ1), and since f0(x) > 0 for each x ∈ Ω
and λ1 ≥ λ0(r) > 0, we have that

−∆g(x) = 0 ≤ λ1f0(x) = λ1(f0(x) + r(x)g(x)) (3.13)

for every x ∈ Ω.
Thus h is an upper solution and g is a lower solution of




−∆u(x) = λ1(f0(x) + r(x)u(x)), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(3.14)

with h(x) ≥ g(x) for each x ∈ Ω since h is nonnegative. By Theorem 4 there
exists a solution u to problem (3.14) such that 0 = g(x) ≤ u(x) ≤ h(x) for
each x ∈ Ω. Notice that u is necessarily different from the zero function
because this function is not a solution to problem (3.14). Indeed, if u ≡ 0
were a solution then 0 = −∆u(x) = λ1(f0(x) + r(x)u(x)) = λ1f0(x) and
therefore f0(x) = 0 for each x ∈ Ω because λ1 6= 0. This would contradict the
positivity assumption about f0. The fact that −∆u(x) > λ1r(x)u(x) ≥ 0, u
does not vanish everywhere, u(x) = 0 for each x ∈ ∂Ω and Ω is connected,
allows us to conclude that u(x) > 0 for each x ∈ Ω as a consequence of part
2 of Theorem 8.
Let w be a nonnegative solution to problem (3.10) with λ = λ0(r), which
does not vanish everywhere in Ω. Now

0 =
∫
Ω(u∆w − w∆u)dV

=
∫
Ω [u(−λ0(r)r(x)w)− w(−λ1(f0(x) + r(x)u)] dV

=
∫
Ω{w[λ1f0(x) + λ1r(x)u(x)]− u[λ0(r)r(x)w(x)]}dV

(3.15)
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where the first equality holds due to the fact that u and w vanish on ∂Ω,
and the second equality is a well known identity (see [5]). This implies

(λ0(r)− λ1)
∫

Ω
r(x)u(x)w(x)dV = λ1

∫

Ω
w(x)f0(x)dV. (3.16)

The right hand side of the latter equation is strictly positive, since λ1 > 0,
w is continuous, nonnegative and does not vanish everywhere in Ω, and
f0(x) > 0 for each x ∈ Ω. On the other hand, the integral

∫

Ω
r(x)u(x)w(x)dV (3.17)

is positive because r, u, w are continuous functions in Ω, with r(x) > 0 for
each x ∈ Ω, and u,w nonnegative and neither of them vanishing everywhere
in Ω. This combined with the positivity of the left hand side of equation
(3.16) implies that λ0(r)−λ1 > 0, contradicting our assumption λ1 ≥ λ0(r).

Let us see what Lemma 9 says about the original Gelfand problem



−∆u(x) = λeu(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(3.18)

In this problem one can take f0(x) = r(x) = 1 for every x ∈ Ω, because
eu ≥ 1 + u for any u ∈ [0,∞). We conclude that if λ1 ≥ λ0, where λ0 is the
smallest value of λ for which problem




−∆u(x) = λu(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(3.19)

admits a nontrivial solution, then problem (3.18) with λ = λ1 admits no
nonnegative solution.

More generally, if in problem (3.8) the function F is such that F (x, 0) > 0
for every x ∈ Ω, Fu(x, u) > 0 and Fuu(x, u) ≥ 0 for every (x, u) ∈ Ω× [0,∞),
then an immediate application of the one-dimensional Taylor’s theorem with
residue shows that F (x, u) ≥ F (x, 0)+Fu(x, 0)u for every (x, u) ∈ Ω×[0,∞).
Lemma 9 implies that if λ1 ≥ λ0(Fu(·, 0)) then λ1 does not belong to ΣF .

The next lemma is due to Bandle (see [1]) and uses symmetrization and
isoperimetric inequalities.
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Lemma 11 The (unique) solution w of



−∆w(x) = 1, x ∈ Ω

w(x) = 0, x ∈ ∂Ω
(3.20)

satisfies

w(x) ≤ 1
2n

(
Vn

Sn

) 2
n

(3.21)

for every x ∈ Ω ⊂ Rn, where Vn and Sn denote the n−dimensional volumes
of Ω and the unit ball, respectively.

As a consequence of this lemma, we have the following theorem.

Theorem 12 (Lower estimate for the size of ΣF ∩ [0,∞) in terms of a
nonnegative nondecreasing function of u dominating F ) Assume that there
exists a nonnegative nondecreasing function f0 ∈ C0,γ([0,∞)) such that
F (x, u) ≤ f0(u) for every (x, u) ∈ Ω × [0,∞). Suppose that the function

m
f0(m) defined for m ≥ 0 attains its absolute maximum at m0. If

λ1 =
2nm0

f0(m0)

(
Sn

Vn

) 2
n

(3.22)

then [0, λ1] ⊂ ΣF for problem (3.8).

Proof. Clearly the function g ≡ 0 is a lower solution to problem P(F,λ)

for every λ ∈ R. Fix λ ∈ [0, λ1], and define h(x) = λf0(m0)w(x) for every
x ∈ Ω. h is clearly a solution to problem




−∆u(x) = λf0(m0), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(3.23)

Part 2 of Theorem 8 implies that w is a nonnegative function on Ω. As a
consequence, the function h is also nonnegative on Ω. Furthermore,

h(x) = λf0(m0)w(x) ≤ λ1f0(m0)
1
2n

(
Vn

Sn

) 2
n

= m0 (3.24)

for every x ∈ Ω, due to the upper bound for w given by Lemma 11. Now,
we have

λF (x, h(x)) ≤ λf0(h(x)) ≤ λf0(m0) = −∆h(x) (3.25)
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for every x ∈ Ω, because f0 is nondecreasing and inequality (3.24). But
this fact combined with the nonnegativeness of h shows that h is an upper
solution for P(F,λ). By Theorem 4 there exists a nonnegative solution of
problem (3.8) and therefore λ ∈ ΣF . We conclude that [0, λ1] ⊂ ΣF .

Remark 13 Notice that last proof never uses the fact that function m
f0(m)

defined for m ≥ 0 attains its absolute maximum at m0. So the proof actually
works for any choice of m0 ≥ 0. Now, since

λ1 = 2n

(
Sn

Vn

) 2
n m0

f0(m0)
, (3.26)

λ1 is maximized when m0
f0(m0) is maximized, the choice of m0 in the hypoth-

esis has the purpose of obtaining the largest possible interval inside ΣF the
argument is capable of producing. Notice also that if m

f0(m) is not bounded
from above, then (0,∞) = ΣF ∩ (0,∞).

Theorem 12 can be applied to the Gelfand problem when Ω is the stan-
dard unit ball B(0, 1) ⊂ Rn, with n = 1, 2, 3. In this case we can choose
f0(u) = eu for u ≥ 0. This function has a maximum value of e−1 and it is
attained when m0 = 1. Therefore λ1 = 2ne−1, for n = 1, 2, 3.
Considering Ω = B(0, 1), the unidimensional problem given by




−u′′ = λeu, x ∈ (−1, 1)

u = 0, x = −1, 1

has some nonnegative solution if λ ∈ [0, 2/e], and does not admit any non-
negative solution if λ ≥ λ0 = π2

4 .
The same problem in dimension two is




−∆u = λeu, x ∈ B(0, 1) ⊂ R2

u = 0, x ∈ ∂B(0, 1) = S1

has some nonnegative solution if λ ∈ [0, 4/e], and does not admit any non-
negative solution if λ ≥ λ0 = 5.784.
In dimension three, the problem




−∆u = λeu, x ∈ B(0, 1) ⊂ R3

u = 0, x ∈ ∂B(0, 1) = S2
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has some nonnegative solution if λ ∈ [0, 6/e], and does not admit any non-
negative solution if λ ≥ λ0 = 9.872.

The next result is due to Kazdan and Warner [13]. The proof of the
theorem presented here is a contribution of this Thesis.

Theorem 14 (Form of the set of those λ for which the second generalization
of Gelfand’s problem admits a positive solution) If F (x, u) > 0 for (x, u) ∈
Ω × [0,∞), then there is a λ0 ∈ (0,∞] such that if λ < 0 problem P(F,λ)

admits no nonnegative solution; if λ = 0 problem P(F,λ) has u ≡ 0 as its
unique solution; if λ ∈ (0, λ0), problem P(F,λ) admits a solution which is
strictly positive at each point of Ω; if λ > λ0, problem P(F,λ) admits no
solution. In addition,

1. If lim infs→∞
F (x,s)

s > 0 uniformly in x ∈ Ω, then λ0 < ∞.

2. If lims→∞
F (x,s)

s = 0 uniformly in x ∈ Ω, then λ0 = ∞.

Proof. Let λ < 0 and assume that u is a nonnegative solution of P(F,λ).
Then −∆u(x) = λF (x, u) ≤ 0 for x ∈ Ω and u(x) = 0 for x ∈ ∂Ω. Applying
Theorem 8, we obtain that u(x) ≤ 0 for each x ∈ Ω. But this contradicts
one of our assumptions about u.

Let us now assume that λ = 0 and let u be a solution to problem P(F,0).
This means that −∆u = 0 on Ω and u = 0 on ∂Ω. Thus we have that
∆u ≥ 0 and ∆u ≤ 0 on Ω. But Theorem 8 tells us that either u < 0 on Ω
or u ≡ 0 on Ω and that either u > 0 on Ω or u ≡ 0 on Ω. We conclude that
u ≡ 0. Since u ≡ 0 is clearly a solution to P(F,0) we confirm the claim.

By Lemma 7 if λ1 > 0 is such that problem P(F,λ1) admits a nonnegative
solution, then problem P(F,λ) also admits a nonnegative solution, whenever
λ ∈ [0, λ1]. Let us define P as the set of real numbers λ such that problem
P(F,λ) admits a positive solution (i.e. a solution u with u(x) > 0 for each
x ∈ Ω). To see that P is not empty, we show that P(F,λ1) admits a positive
solution for some λ1 > 0. The function g ≡ 0 is a lower solution of P(F,λ)

for each λ > 0. Let h be the solution to the problem



−∆w(x) = 1, x ∈ Ω

w(x) = 0, x ∈ ∂Ω
(3.27)

(The last problem is a second order elliptic boundary value problem, and the
existence and uniqueness of solutions for the latter is established in many
references. See for example Chapter 6 of [5].) Notice that h cannot be
constant (simply because such function is not a solution to (3.27)), and that
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∆h(x) ≤ 0 for each x ∈ Ω. By Theorem 8, h attains its absolute minimum
at some point in ∂Ω. But since h(x) = 0 for each x ∈ ∂Ω we have that
the absolute minimum value of h is zero. Therefore h is nonnegative on Ω.
Furthermore, Theorem 8 implies that h(x) > 0 for each x ∈ Ω since h is
not constant and Ω is connected. The real valued function defined on the
compact set Ω sending x to F (x, h(x)) is continuous. Therefore, there exists
K > 0 such that F (x, h(x)) ≤ K for each x ∈ Ω. Now, if λ1 > 0 is such that
1 ≥ λ1K, then −∆h(x) = 1 ≥ λ1F (x, h(x)) for each x ∈ Ω. This combined
with the fact that h(x) = 0 ≥ 0 for each x ∈ ∂Ω, says that h is an upper
solution of P(F,λ1). Since it also holds that g(x) = 0 ≤ h(x) for each x ∈ Ω,
Theorem 4 implies that there is a solution u to problem P(F,λ1) satisfying
0 ≤ u(x) ≤ h(x). Let us see that u is positive. In fact, being a solution to
P(F,λ1), u is not constant and ∆u(x) = −λ1F (x, u(x)) ≤ 0 at each x ∈ Ω.
Again, applying Theorem 8 we conclude that u(x) > 0 for each x ∈ Ω. This
shows that λ1 ∈ P and therefore that P, actually P ∩ (0,∞), is not empty.
We define λ0 = sup P.

Let us assume that λ > λ0 and let u be a solution to P(F,λ). Since
−∆u = λF (x, u) on Ω and u = 0 on ∂Ω, we have that −∆u ≥ 0 and
therefore that u ≡ 0 on Ω or u > 0 on Ω. On the other hand, the fact that
λ > λ0 = sup P implies that λ /∈ P and therefore that u ≡ 0 on Ω. But
the latter is not a solution to problem P(F,λ). We conclude that there is no
solution to problem P(F,λ).

We now proceed to prove parts 1 and 2.

1. For each s ∈ [1,∞), let us define φs : Ω → [0,∞] by φs(x) = F (x, s)/s.
Let us see that the family {φs}s∈[1,∞) is equicontinuous. By hypothe-
sis, the function F : Ω → (0,∞) belongs to C0,γ

(
Ω

)
. In particular,

there is a positive constant C > 0, such that

|F (x, s)− F (y, s)| ≤ C||x− y||γ (3.28)

for every x, y ∈ Ω and s ≥ 1. Since s ≥ 1, inequality (3.28) implies
∣∣∣∣∣
F (x, s)

s
− F (y, s)

s

∣∣∣∣∣ ≤ C||x− y||γ (3.29)

for every x, y ∈ Ω and s ≥ 1. Now, for each ε > 0 take δ(ε) to be
(ε/C)1/γ . It immediately follows that for every s ≥ 1, the inequality
||x − y|| < δ(ε) implies the inequality |F (x, s)/s − F (y, s)/s| < ε.
But this is the equicontinuity of the family {φs}s∈[1,∞). So all the
hypotheses necessary to apply Theorem 32 on appendices are fulfilled
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by {φs}s∈[1,∞). We conclude that there exist numbers β′ > 0 and s1 ≥
1, such that F (x, s)/s = φs(x) > β′ or F (x, s) > β′s, for every s ≥ s1

and x ∈ Ω. On the other hand, let m > 0 be the absolute minimum
value of the continuous function F in the compact set Ω× [0, s1], and
let α = min{m, β′s1} and β = α/s1. It can be see that F (x, s) > βs+α
for each (x, s) ∈ Ω× [0,∞).
Suppose now that u is a positive solution to P(F,λ) and ψ a positive
solution to the problem

2. If lims→∞
F (x,s)

s = 0; since F (x, s) < s for s large enough and uni-
formly in x, an upper solution ū for any λ > 0 can be constructed.
The function u ≡ 0 is always a lower solution. By Theorem 4, there is
a solution µ ≥ 0, so λ = sup P = ∞.

Corollary 15 (Application of last results to the original Gelfand problem)
Given any bounded domain Ω ⊂ Rn, there exists δFK ∈ (0,∞) such that

1. for 0 < δ < δFK , BVP (2.60) has at least one positive solution, and

2. for δ > δFK , there is no such solution.
In addition, if Ω is the unit ball in Rn, then

2n

e
≤ δFK ≤ µ

e
. (3.30)

where µ is the first eigenvalue of: −∆ψ = µψ for x ∈ ∂Ω.

Proof. The existence of δFK follows from Theorem 14. The lower bound
on δFK follows from Theorem 12. Since eu ≥ eu for all u ≥ 0, the value of β
in Theorem 14 can be chosen to be the number e; the upper bound on δFK

follows.

The value δFK is the critical value for the Frank-Kamenetski parameter
δ, which was used to differentiate between explosive and nonexplosive ther-
mal events. For δ > δFK , the nonexistence of a positive solution for (2.60)
was interpreted to mean that an explosion would occur.



Chapter 4

Spherical Symmetry

In this section we will consider the following third generalization of Gelfand’s
problem (see 3.18)




−∆u = f(u), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(4.1)

where f : [0,∞) → R is a function of class C1, and study the relation
between the shape of Ω and the shape of its positive solutions. Specifically,
we will present the proof of the following paradigmatic result due to Gidas,
Ni and Nirenberg [10]. Building on work of Alexandrov and Serrin [18], these
authors proved that if Ω = {x ∈ Rn : |x| < R} = B(0, R), and u ∈ C0

(
Ω

)
with u|Ω ∈ C2( Ω ) satisfies u(x) > 0 for each x ∈ Ω, −∆u = f(u) on Ω and
u(x) = 0 for each x ∈ ∂Ω, then u is spherically symmetric and spherically
decreasing. That is, if r := |x|, then u = u(r) and u′(r) < 0 for r ∈ (0, R).
(This theory is rigorously treated in a highly recommended book written by
L. E. Fraenkel [7]).

The paragraph above implies that any positive solution of (4.1) is a
solution of the ordinary differential equation

u′′ +
n− 1

r
u′ + f(u) = 0, 0 < r < R

subject to the boundary value conditions

u′(0) = 0, u(R) = 0.

The assumption that u > 0 is necessary. For example, u(x) = sin(πx) is
a solution to: −u′′ = π2u for x ∈ (−1, 1) and u(±1) = 0. We have u(x) > 0

33
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for x ∈ (0, 1), but u(x) < 0 for x ∈ (−1, 0). The solution u(x) is not radially
symmetric. Even if u(x) ≥ 0 the full result may not be true. For example,
u(x) = 1− cos(2πx) is a solution to: −u′′ = 4π2(u− 1) for x ∈ (−1, 1) and
u(±1) = 0. We have u(x) ≥ 0 (where u(0) = 0) and u(−x) = u(x), but u(x)
is not radially decreasing. Note that the condition f(u) ≥ 0 for all u implies
that any nontrivial solution is positive (by the strong maximum principle,
referenced in [5], [11], [15] and [16] ).

Although the result is stated for f ∈ C1, this hypothesis can be weak-
ened. The result also holds for any function f = f1 + f2 where f1 ∈ C1

and f2 is monotone increasing. In particular, the result holds if f is locally
Lipschitz continuous.

4.1 Generalized Hopf Lemma

The following lemma (Lemma 16), is very important and is used by Gidas,
Ni and Nirenberg in [10] but in a different context; its proof is developed
here and it is a contribution of this thesis. It also should be said that it is
used wrongly in [2] during the proof of Lemma 20, where Lemma 18 should
had been used instead, as was made in the present work.

Lemma 16 (Generalized Hopf lemma) Let Ω∗ be a bounded domain whose
boundary ∂Ω∗ is of class C2. Let T be a hyperplane containing the normal
to ∂Ω∗ at some point q. Let Ω be that portion of Ω∗ which lies on one side
of T . Let w ∈ C2

(
Ω

)
satisfy w(x) ≥ 0 and ∆w(x) ≤ 0 for each x ∈ Ω, and

w(q) = 0. If s is any direction vector at q entering Ω nontangentially, then

∂w

∂s
(q) > 0 or

∂2w

∂s2
(q) > 0 (4.2)

unless w ≡ 0 on each connected component of Ω whose boundary contains
q.

Proof. Without loss of generality, we can orient Ω∗ so that the plane T has
normal vector γ = (1, 0, . . . , 0). Let Ω be on the side of T which γ points
to. Let K1 be an open ball internally tangent to Ω∗ at q with radius r1.
Without loss of generality, translate Ω∗ so that the origin 0 ∈ Rn becomes
the center of K1. Let K2 be the open ball of radius 1

2r1 centered at q. Define
K = K1 ∩K2 ∩ Ω. Figure 4.1 illustrates these sets.

Define z(x) = x1(e−α(r(x))2 − e−αr2
1) where (r(x))2 = x2

1 + . . . + x2
n is the

square of the distance from x to the origin, and α > 0 is a constant which
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Figure 4.1: Spherical Symmetry

will be adjusted soon. Let us see that

∆z = 2αx1e
−α(r(x))2 [2α(r(x))2 − (n + 2)], x ∈ Rn. (4.3)

In fact, we have

∂z(x)
∂x1

= (e−α(r(x))2 − e−αr2
1)− 2αx2

1(e
−α(r(x))2)

and

∂2z(x)
∂x2

1

= e−α(r(x))2(−2αx1)− e−α(r(x))2(−4αx1) + e−α(r(x))2(4α2x2
1)

= 2αx1e
−α(r(x))2(2αx2

1 − 3)

For i = 2, . . . , n,

∂z(x)
∂xi

= −2αx1xie
−α(r(x))2

and
∂2z(x)
∂x2

i

= 2αx1e
−α(r(x))2(2αx2

i − 1).
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Consequently,

∆z = 2αx1e
−α(r(x))2((2αx2

1 − 3) + (2αx2
2 − 1) + . . . + (2αx2

n − 1))

= 2αx1e
−α(r(x))2 [2α(r(x))2 − (n + 2)].

The function z satisfies

z(x) > 0, x ∈ K and z(x) = 0, x ∈ T ∪ ∂K1 (4.4)

The first property is justified by the fact that for all x ∈ K, x1 > 0 and
r(x) < r1. The second one follows from the facts that x1 = 0 for each x ∈ T ,
and r(x) = r1 for each x ∈ ∂K1. Now, if we choose α = 2(n + 2)/r2

1, we
claim that ∆z(x) > 0 for each x ∈ K. In fact, since 2αx1e

−α(r(x))2 > 0 for
all x ∈ K, it suffices to check that 2α(r(x))2− (n + 2) > 0 for the chosen α.
Since

r2
1

4
< (r(x))2

we have
1

(r(x))2
<

4
r2
1

Multiplying by (n + 2)/2 we arrive at

(n + 2)
2(r(x))2

<
2(n + 2)

r2
1

= α

Therefore
2α(r(x))2 − (n + 2) > 0

Let us assume that w 6≡ 0 on some connected component Ω1 of Ω, sat-
isfying q ∈ ∂Ω1. Let us see that w(x) > 0 for each x in Ω1. By hypothesis
w(x) ≥ 0 for each x in the connected set Ω1 and ∆w(x) ≥ 0 for each x ∈ Ω1.
The strong maximum principle tells us that the function w restricted to
Ω1 reaches its absolute minimum only on the boundary of Ω1. Now, since
w(q) = 0 and q ∈ ∂Ω1, the absolute minimum of w on Ω1 is 0. This implies
that w(x) is never zero for x ∈ Ω1, and as a consequence that w(x) > 0 for
each x ∈ Ω1.

Let us denote the set ∂K ∩ ∂K2 by A. We observe that A is a compact
set. We claim that there exists ε > 0 such that w(x) > εx1 for every x ∈ A.
Suppose that this is not the case, that is, that there exists a sequence {pn}∞n=1

of points in A such that

w(pn)/x1(pn) < 1/n (4.5)
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Notice that it is not possible that all the terms of {pn}∞n=1 satisfy x1(pn) ≥ C
for some fixed constant C > 0, because the function w/x1, being continuous
and strictly positive on the compact set S := A ∩ {p ∈ Rn : x1(p) ≥ C},
has a positive absolute minimum in S, in contradiction with property (4.5).
Let us extract a subsequence {pnk

}∞k=1 such that x1(pnk
) goes to zero as k

goes to infinity. Since A is compact we can extract a subsequence {pnkl
}∞l=1

converging to a point p ∈ A. It is clear that x1(p) must be equal to zero.
Let us see that w(p) = 0. This immediately follows from the fact that

w(pnkl
) < (1/nkl

)x1(pnkl
) (4.6)

for each l, and the fact that the right hand side approaches zero as l goes
to ∞. Since ∆w(x) ≤ 0 for each x ∈ Ω, and w(x) > 0 for each x ∈ Ω and
therefore w(p) < w(x) for each x ∈ Ω with p ∈ ∂Ω, Hopf’s lemma applies,
allowing us to conclude that ∂w

∂ν (p) < 0. But since ∂w
∂ν (p) = − ∂w

∂x1
(p), one

obtains ∂w
∂x1

(p) > 0. Now, the continuity of ∂w
∂x1

on Ω combined with the facts
that x1(p) = 0 and the distance between p and q is r1/2 > 0 guarantees the
existence of an open ball B(p, r) such that U := B(p, r) ∩ {x ∈ Rn : x1 >
0} ⊂ Ω and ∂w

∂x1
(x) > 0 for each x ∈ U . The compactness of U and the

continuity of ∂w
∂x1

on Ω implies the existence of a number K > 0 such that
∂w
∂x1

(x) ≥ K for each x ∈ U . For each x = (x1, . . . , xn) ∈ U let x′ denote the
point (0, x2, . . . , xn). We have

w(x) = w(x′) +
∫ x1

0
∂w
∂x1

(t, x2, . . . , xn)dt

≥ ∫ x1

0
∂w
∂x1

(t, x2, . . . , xn)dt

≥ Kx1

(4.7)

for each x ∈ U . On the other hand, since pnkl
converges to p as l goes to

infinity, there exists an L such that if l ≥ L then pnkl
∈ U , and (4.7) im-

plies that w(pnkl
) ≥ Kx1(pnkl

). This conclusion contradicts (4.6), allowing
us to infer that there exists ε > 0 such that w(x) > εx1 for each x ∈ A.
By hypothesis, w(x) ≥ 0 for each x ∈ Ω and therefore w(x) ≥ 0 for each
x ∈ (∂K ∩∂K1)∪ (∂K ∩T ). Let us see that z(x) ≤ x1 for every x ∈ A. This
amounts to prove that e−αr2(x)−e−αr2

1 = e−2(n+2)(r(x)/r1)2−e−2(n+2) < 1 for
each x ∈ A and each integer n ≥ 1. The latter inequality follows by writing
e−2(n+2)(r(x)/r1)2−e−2(n+2) = e−2(n+2)(r(x)/r1)2(1−e−2(n+2)(1−(r(x)/r1)2)) and
observing that 1

2 ≤ r(x)
r1

≤ 1 for each x ∈ A.

Define φ(x) = ω(x)−εz(x) for each x ∈ K. Then φ satisfies the following
three conditions:

φ(x) ≥ 0 for x ∈ ∂K, (4.8)
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φ(q) = 0 (4.9)

∆φ(x) < 0 for x ∈ K (4.10)

It is clear that φ(x) ≥ 0 for each x ∈ T ∪∂K1 since z(x) = 0 for each x in this
set. On the other hand, we know that w(x) ≥ εx1 for each x ∈ A and x1 ≥ z
in general for all x ∈ K. On the definition of z(x) = x1(e−α(r(x))2 − e−αr2

1)
the last sentence means that (e−α(r(x))2 − e−αr2

1) < 1 and with our selection
of α

e
−2(n+2)( r

r1
)2 − e−2(n+2) < 1

but
r

r1
≥ r1

2r1
=

1
2

and
(

r

r1
)2 ≥ 1

4

In general, it is valid that for 0 < a < 1

0 < a1/4 − a < 1

but

(a1/4 − a) = (a(a−3/4 − 1)) = a(
1− a3/4

a3/4
) = a1/4(1− a3/4)

so
1 > a1/4 − a ≥ at − a for t ≥ 1

4
As final result, w(x) ≥ εx1 ≥ εz(x); ∴ w(x) ≥ εz(x) for x ∈ A.

We claim that φ(q) = 0, because w(q) = 0 by definition and z(q) = 0
because of the form of z(x).

Finally ∆φ < 0 because ∆w ≤ 0, ∆z > 0 and ε is positive, so ∆φ =
∆w − ε∆z < 0 on K. By the strong maximum principle, φ > 0 on K. At q
we have either φs > 0 or φss ≥ 0; because if we define

f(t) = φ(q + ts)

the last requirement is the same as

f ′(0) > 0 or f ′′(0) ≥ 0.

If that were not the case for f : [0, c) on R then

f ′(0) ≤ 0 and f ′′(0) < 0.
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but that can not be because if f ′′(0) < 0, there exists c > 0 such that
f ′′(t) for 0 ≤ t < c, so f ′ is strictly decreasing on [0, c). In other words, as
f ′(0) ≤ 0 then f ′(t) < 0 if t ∈ [0, c) and f is decreasing on [0, c); but f(0) = 0
then f(t) < 0 for t ∈ (0, c). That is a contradiction because f(t) < 0 implies
φ(q + ts) < 0 and we had assumed φ(x) > 0 for all x ∈ K.

Let us see now that zs(q) = 0 and zss(q) > 0, so either ws(q) > 0 or
wss(q) > 0. By definition z(x) = x1(e−α(r(x))2 − e−αr2

1) and also can be
established that zs(q + ts) = ∇z(q + ts) · s; on the other hand we have

∂z(x)
∂x1

= (e−α(r(x))2 − e−αr2
1)− 2αx2

1(e
−α(r(x))2)

and specifically on q

∂z(q)
∂x1

= (e−α(r(q))2 − e−αr2
1)− 2αx1(q)2(e−α(r(q))2) = 0

as a consequence of r(q) = r1 on one side and x1(q) = 0 by the other. Also
we established before, for i = 2, . . . , n,

∂z(x)
∂xi

= −2αx1xie
−α(r(x))2

that evaluated at q results in

∂z(q)
∂xi

= −2αx1(q)xi(q)e−α(r(q))2 = 0

because of x1(q) = 0.
In t = 0 we have zs(q) = ∇z(q) · s. Which also means

zs(q) = (
∂z(q)
∂x1

, · · · ,
∂z(q)
∂xn

) · s = 0

If we claim now f(t) = zs(q + ts) because of what has been seen above

d

dt
f(t) =

d

dt
(zs(q + ts)) =

d

dt
(∇z(q + ts) · s)

Evaluating ∇z on q + ts we have for

∂z(x)
∂x1

= (e−α(r(x))2 − e−αr2
1)− 2αx2

1(e
−α(r(x))2)

so that
∂z(q + ts)

∂x1
= (1− 2α(ts1)2)e−α(r(q+ts))2 − e−α(r1)2
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and for i = 2, . . . , n,

∂z(x)
∂xi

= −2αx1xie
−α(q+ts)2

so that
∂z(q + ts)

∂xi
= −2α(ts1)(qi + tsi)e−α(q+ts)2

In that way d
dt(∇z(q + ts) · s) evaluated at zero will be

d

dt
((1− 2α(ts1)2)e−α(r(q+ts))2 − e−α(r1)2 ,

− 2α(ts1)(q2 + ts2)e−α(r(q+ts))2 , . . . ,

− 2α(ts1)(qn + tsn)e−α(r(q+ts))2)

that evaluated at q, where t = 0 results in

(−2αe−α(r1)2(q · s),−2αs1q2e
−α(r1)2 , . . . ,−2αs1qne−α(r1)2) · s > 0

(−2α(q · s),−2αs1q2, . . . ,−2αs1qn) · (s1, . . . , sn) > 0

but we know that s1 > 0 and that q · s < 0(vector entering), so that

((q · s), s1q2, . . . , s1qn) · (s1, . . . , sn) < 0

4.2 The Method of Moving Parallel Planes

Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. Let λ ∈ R
and let γ ∈ R be a unit vector. Let us define Tλ = {x ∈ Rn : γ · x = λ}
to be the hyperplane with normal γ and whose distance from the origin 0 is
|λ|. There is a λ0 sufficiently large such that Tλ0 ∩ Ω 6= ∅ and Tλ ∩ Ω = ∅
for λ > λ0. For any x ∈ Rn, let xλ be its reflection through Tλ.
Let us define Σ(λ) = Ω ∩ {x : γ · x > λ}; then Σ(λ) = ∅ for λ ≥ λ0 and
Σ(λ) 6= ∅ for λ < λ0. The set Σ(λ) is called an open cap. Let us define Σ′(λ)
to be the reflection of Σ(λ) through the plane Tλ. Like shown in Figure 4.2.

For λ < λ0 with |λ− λ0| sufficiently small, it can be seen that Σ′(λ) ⊆ Ω.
Decreasing λ further, we have Σ′(λ) ⊆ Ω until either
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Figure 4.2: Moving Parallel Planes Method

Figure 4.3: Examples of conditions 1 and 2
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Figure 4.4: Maximal and Optimal Caps

1. Σ′(λ) becomes internally tangent to ∂Ω at some p /∈ Tλ, or

2. Tλ is orthogonal to ∂Ω at some q ∈ Tλ ∩ ∂Ω.

That conditions are shown in Figure 4.3.
Define

λ1 = sup{λ < λ0 : condition 1. or 2. occurs}.
The cap Σ(λ1) is called the maximal cap associated with γ. Note that
Σ′(λ) ⊆ Ω, if λ ∈ [λ1, λ0).
If λ is decreased below λ1, it may be that Σ′(λ) ⊆ Ω. Let us define

λ2 = inf{λ < λ0 : Σ′
(
λ
) ⊆ Ω for λ ∈ (λ, λ0)}.

The cap Σ(λ2) is called the optimal cap associated with γ. Observe that at
λ2 either 1. or 2. occurs and Σ′(λ2) ⊆ Ω. Figure 4.4 shows maximal and
optimal caps.
Without loss of generality it can be assumed that γ = (1, 0, . . . , 0) ∈ Rn

and λ0 = max{x1 : x ∈ Ω} where x = (x1, . . . , xn). Let λ1 and λ2 be defined
as above. Define Σ1 to be the maximal cap associated with γ and denote
its reflection through Tλ1 by Σ′1. Let us define Σ2 to be the optimal cap
associated with γ and denote its reflection through Tλ2 by Σ′2
For x0 ∈ ∂Ω and ε > 0, define a neighborhood of x0 in Ω by Ωε = Ω∩Bε(x0)
where Bε(x0) is the ball of radius ε centered at x0. Let us define Sε =
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Figure 4.5: Neighborhood of x0

∂Ω ∩ Bε(x0). Let ν(x) = (ν1(x), . . . , νn(x)) be the unit outward normal to
∂Ω at x. Figure 4.5 illustrates the situation described.

Lemma 17 Let x0 ∈ ∂Ω be such that ν(x0)·γ > 0. Choose ε > 0 sufficiently
small so that ν(x)·γ > 0 for all x ∈ Sε. If u ∈ C2

(
Ωε

)
satisfies ux1(x0) = 0,

u(x) = 0 for x ∈ Sε, and u(x) > 0 for x ∈ Ωε, then

∇u(x0) = 0

and
D2u(x0) = [∆u(x0)]ν(x0)νt(x0)

where D2u = [uxixj ] is the n× n matrix of second derivatives of u.

Proof. On Sε we know that u(x) ≡ 0 and so ∇u(x) is normal to Sε at each
x. Since Sε is a smooth (n − 1)-dimensional manifold as described in [12],
the tangent space T (x) to x ∈ Sε is (n− 1)-dimensional, meaning that

T (x) = span〈w1(x), . . . , wn−1(x)〉,

where the wk(x) form an orthonormal set for each x. As consequence,∇u(x)·
wk(x) = 0 for k = 1, . . . , n−1. Since by hypothesis ν(x)·γ > 0 on Sε it must
be that γ /∈ T (x) and so {w1(x), . . . , wn−1(x), γ} is a basis for Rn for each
x. The basis coefficients for ∇u(x0) are given by ∇u(x0) · wk(x0) = 0 for
k = 1, . . . , n− 1, and ∇u(x0) · γ = ux1(x0) = 0. Consequently, ∇u(x0) = 0.
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Let x(s) be any smooth curve on Sε such that x(0) = x0. Since u ≡ 0 on
Sε, we have

y(s)T∇u(x(s)) ≡ 0

for any smooth function y(s) ∈ T (x(s)) and considering that the gradient is
orthogonal to tangent plane. Differentiating with respect to s gives us

y(s)T D2u(x(s))x
′
(s) + y

′
(s)T∇u(x(s)) ≡ 0.

It can be chosen n− 1 curves x(s) so that at s = 0,

wi(x0)T D2u(x0)wj(x0) = 0, (4.11)

with i, j = 1, . . . , n− 1.
The hypotheses on u guarantee that ∂u(x)

∂ν ≤ 0 for x ∈ Sε. Moreover, since
∇u(x) and ν(x) are parallel, we have

ν(x(s))T∇u(x(s)) = −|∇u(x(s))| =: −p(s)

for any smooth curve x(s) on Sε with x(0) = x0. The function p(s) is
nonnegative and differentiable. Thus, at a point where p = 0, we must
have p′ = 0, a local minimum. In particular, p′(0) = 0 since we had proved
∇u(x0) = 0. Differentiating with respect to s gives us

[
d

ds
ν(x(s))

]T

∇u(x(s)) + ν(x(s))T D2u(x(s))x
′
(s) = −p′(s).

At s = 0 we have ν(x0)T D2(u(x0))x
′
(0) = 0. The curves x(s) can be chosen

to obtain
ν(x0)T D2(u(x0))wj(x0) = 0, (4.12)

for j = 1, . . . , n− 1. The set {w1(x0), . . . , wn−1(x0), ν(x0)} is orthonormal,
so the block matrix

Q(x0) = [w1(x0)| · · · |wn−1(x0)|ν(x0)]

is orthogonal, Q(x0)ek = wk(x0) for k = 1, . . . , n− 1 and Q(x0)en = ν(x0),
where the ek are the standard Euclidean basis vector in Rn. Combining
equations (4.11) and (4.12), we obtain

mij = (ei)T
(
Q(x0)T D2u(x0)Q(x0)

)
ej = 0
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for i = 1, . . . , n and j = 1, . . . , n − 1. Since D2u(x0) is symmetric because
of Clairaut theorem; from linear algebra it can be see that

QT (x0)D2u(x0)Q(x0) = diag{0, . . . , 0,mnn(x0)}.

Similar matrices have the same trace, so

trace(Q(x0)T D2u(x0)Q(x0)) = trace(D2u(x0)).

That is, mnn(x0) = trace(D2u(x0)) = ∆u(x0). Finally giving

D2u(x0) = Q(x0)diag{0, . . . , 0, ∆u(x0)}QT (x0) = ν(x0)∆u(x0)νT (x0)

completing that way the proof.
Now, we present a very important lemma for the rest of our work.

Lemma 18 Let Ω ⊂ Rn be open and connected, and let u ∈ C2(Ω) be a
function satisfying u ≥ 0 and the differential inequality

Lu ≡ −∆u + c(x)u ≤ 0

for each x ∈ Ω. Suppose that L is uniformly elliptic and c is a bounded
function. Let us assume that there is an open ball B in Ω with a point
x ∈ ∂Ω on its boundary and suppose u is continuos in Ω∪{x} and u(x) = 0.
Then if u 6≡ 0 in B we have

∂u

∂ν
(x) < 0,

in the sense that if y ∈ B approaches x along a radius then

limy→x
u(x)− u(y)
|x− y| < 0.

The proof is presented in [10].

Lemma 19 Let x0 ∈ ∂Ω be such that ν(x0)·γ > 0. Choose ε > 0 sufficiently
small so that ν(x) · γ > 0 for all x ∈ Sε. Assume that u ∈ C2

(
Ωε

)
satisfies

1. u(x) > 0 for x ∈ Ωε,

2. 4u + f(u) = 0 for x ∈ Ωε, and

3. u(x) = 0 for x ∈ Sε;
then there is a δ ∈ (0, ε) such that ux1 < 0 on Ωδ.
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Proof. Since u > 0 on Ωε and u = 0 on Sε, it is necessary, because of
the directional derivative, that ∇u ·w ≤ 0 on Sε for any vector w such that
ν ·ω > 0. In particular, since ν(x)·γ > 0, we must have ux1(x) = ∇u(x)·γ ≤
0 on Sε.
If the conclusion is false, then there is a sequence {xj}∞j=1 ⊆ Ωε such that
xj → x0 as j → ∞ and ux1(x

j) ≥ 0. For j large, the interval Ij ⊂ Rn in
the x1-direction from xj to ∂Ω intersects Sε at aj with ux1(a

j) ≤ 0. Thus,
there exists a sequence {x̄j}∞j=1 ⊆ Ωε such that x̄j → x0 as j → ∞ and
ux1(x̄

j) = 0.
By continuity we get

ux1(x0) = limj→∞ux1(x̄
j) = 0. (4.13)

By the Mean Value Theorem, there is a sequence {x̂j}∞j=1 ⊆ Ij such that

ux1x1(x̂
j) =

ux1(x̄
j)− ux1(x0)

[x̄j ]1 − [x0]1
= 0,

then by continuity we have

ux1x1(x0) = limj→∞ux1x1(x̂
j) = 0. (4.14)

If f(0) ≥ 0, then ∆u + c(x)u = ∆u + f(u)− f(0) ≤ 0 on Ωε, where c(x) =
f(u(x))−f(0)

u(x)−0 . By the Mean Value Theorem, for each x ∈ Ωε there exists
vu(x) ∈ (0, u(x)) such that c(x) = f ′(vu(x)). Since u is continuous in Ωε

and f ∈ C1
(

[0,+∞)
)
, c(x) is unrestricted in sign a priori. By Lemma 18,

known as Hopf Lemma; ∂u
∂w (x0) = ∇u(x0) ·w < 0 for any vector w such that

ν(x0) · w > 0. In particular, ux1(x0) = ∇u(x0) · γ < 0, a contradiction to
equation (4.13).
If f(0) < 0, then by Lemma 17 we have uxixj = [∆u(x0)]νiνj = −f(0)νiνj

for all i and j. As a consequence, ux1x1(x0) = −f(0)ν2
1 6= 0, a contradiction

to equation (4.14). As a result, the original assumption (that there is no
δ ∈ (0, ε) such that ux1 < 0 on Ωδ) is not correct and the lemma is that way
proved.

Lemma 20 Suppose there is a λ ∈ [λ1, λ0) such that for x ∈ Σ(λ) we have
ux1(x) ≤ 0 and u(x) ≤ u(xλ) with u(x) 6≡ u(xλ); then u(x) < u(xλ) for
x ∈ Σ(λ) and ux1(x) < 0 for x ∈ Ω ∩ Tλ.

Proof. For γ = (1, 0, . . . , 0) and x ∈ Σ(λ) note that for xλ ∈ Σ′(λ) is
given by xλ = (2λ − x1, x2, . . . , xn). Let us define h(x) := u(xλ) for x ∈
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Σ′(λ)[xλ ∈ Σ(λ)]; then h satisfies 4h + f(h) = 0 for x ∈ Σ′(λ). Define
w(x) := h(x)−u(x) for x ∈ Σ′(λ); then 4w+c(x)w = 4w+f(h)−f(u) = 0
for x ∈ Σ′(λ) where c(x) is constructed using the Mean Value Theorem.
Since w(x) ≤ 0 for x ∈ Σ′(λ) and w(x) = 0 for x ∈ Tλ∩Ω, by the maximum
principle we have w(x) < 0 for x ∈ Σ′(λ), and by Lemma 18 we obtain
∂ω
∂x1

> 0 for x ∈ Tλ ∩ Ω.
In that way, u(xλ) = h(x) < u(x) for x ∈ Σ′(λ) and 0 < wx1 = hx1 − ux1 =
−2ux1 for x ∈ Tλ ∩ Ω. This implies that ux1 < 0 for x ∈ Tλ ∩ Ω and
u(xλ) < u(x) for x ∈ Σ′(λ), implying that u(x) < u(xλ) for x ∈ Σ(λ).

Lemma 21 Let H(λ) = {x ∈ Rn : x1 > λ}. Let u(x) > 0 on Ω, u ∈
C2

(
Ω ∩ H(λ1)

)
, and u(x) = 0 on ∂Ω ∩ H(λ1). For any λ ∈ (λ1, λ0) we

have ux1(x) < 0 and u(x) < u(xλ) for x ∈ Σ(λ).

Proof. Because of Lemma 19, for λ close to λ0 with λ < λ0 we have

ux1(x) < 0, and

u(x) < u(xλ), x ∈ Σ(λ).
(4.15)

Let us decrease λ until a critical value µ is reached,

µ = inf{λ̄ ∈ [λ1, λ0) : (4.15) holds forλ ∈ (λ̄, λ0)}
Equation (4.15) holds in this case for µ < λ < λ0 and, for λ = µ, because of
continuity,

ux1(x) ≤ 0, and

u(x) ≤ u(xλ), x ∈ Σ(µ).
(4.16)

We require that µ = λ1. Assume not; then µ > λ1. For any x0 ∈ ∂Σ(µ)\Tµ

we have xµ
0 ∈ Ω. Since 0 = u(x0) < u(xµ

0 ), (remember u > 0 in Ω) it is
seen that u(xµ) 6≡ u(x) in Σ(µ) in Σ(µ) and so Lemma 20 applies. Thus,
u(x) < u(xµ) for x ∈ Σ(µ) and ux1 < 0 for x ∈ Ω ∩ Tµ and equation (4.15)
holds for λ = µ.
Since ux1 < 0 on Ω ∩ Tµ, by Lemma 19 there is an ε > 0 such that ux1 < 0
on Ω ∩H(µ − ε). By the definition of µ, there are sequences {Λj}∞j=1 and
{xj}∞j=1 with Λj ∈ (µ− ε, µ) and xj ∈ Σ(Λj) satisfying

Λj ↑ µ as j →∞ and u(xj) ≥ u(xΛj

j ) (4.17)

By compactness of
(
Σ(λ1)

)
there is a subsequence {xjk

}∞k=1 such that xjk
→

x ∈ Σ(µ). Then,

x
Λjk
jk

→ xµ ∈ Σ′(µ) and u(x) ≥ u(xµ). (4.18)
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But x ∈ ∂Σ(µ) since (4.15) holds for λ = µ. If x 6∈ Tµ, then xµ ∈ Ω and by
equation (4.18), 0 = u(x) ≥ u(xµ) which is a contradiction to u > 0 on Ω.
In that way, x ∈ Tµ and x = xµ.
For k sufficiently large, the line segment joining xjk

and xjk

Λjk is in Ω.
From equation (4.17) and the Mean Value Theorem, there is a yjk

such that
ux1(yjk

) ≥ 0. Letting k → ∞ it is obtained that ux1(x) ≥ 0 where x ∈ Tµ,
a contradiction since (4.15) holds for λ = µ. Thus, our assumption that
µ > λ1 is incorrect. In fact, µ = λ1 and (4.15) is valid for all λ ∈ (λ1, λ0).

Corollary 22 If ux1(x) = 0 for some x ∈ Ω ∩ Tλ1, then u is symmetric in
Tλ1 and

Ω = Σ(λ1) ∪ Σ′(λ1) ∪ [Tλ1 ∩ Ω].

Proof. If ux1(x) = 0 for some x ∈ Ω ∩ Tλ1 , then by Lemma 20 we have
u(x) ≡ u(xλ1) for x ∈ Σ(λ1). This implies that u is symmetric relative
to Tλ1 . Since u(x) > 0 in Σ(λ1) and u = 0 on ∂Ω, we conclude that
Ω = Σ(λ1) ∪ Σ′(λ1) ∪ [Tλ1 ∩ Ω].
Now, the main result on spherical symmetry will be proved

Theorem 23 (Form of positive solutions of third generalization of Gelfand’s
problem in a ball) For Ω = {x ∈ Rn : |x| < R}, let u ∈ C2

(
Ω

)
be a positive

solution of BVP (4.1) where f ∈ C1; then u = u(r) where r = |x| and
∂u
∂r < 0 for r ∈ (0, R).

Proof. By Lemma 21 and Corollary 22, ux1 < 0 for all x with x1 > 0.
This implies that ux1 > 0 for x1 < 0. As a consequence, ux1(x) = 0 for
x1 = 0. By Corollary 22, u is symmetric in x1. Since the direction vector γ
is arbitrary, the argument above works for any direction. It follows that u
is spherically symmetric and ur < 0 for 0 < r < R.



Chapter 5

Conclusions and
Recommendations

This thesis gave an introduction to the subject of combustion theory, start-
ing with a description of the physical and chemical nature of combustion
processes, then presenting the derivation of the set of partial differential
equations that governs them, and finally giving a sample of how the math-
ematical study of these equations can give information about the processes
they model. As this work progressed it became increasingly clear how vast
and multifaceted the subject is. It provides with interesting and deep ques-
tions to the physicist, the chemist, the engineer, and the mathematician
specialized in the fields of partial differential equations or numerical anal-
ysis. It was also realized that it is an excellent policy to not only study
differential equations abstractly, but to study them in relation with the phe-
nomena they model. It is often the case that the physical intuition serves as
a guide for the development of the abstract study of the differential equa-
tion. Many key concepts (e.g. energy of a solution) used in the abstract
study of differential equations were first developed by physicists, and would
have possibly never been discovered in an entirely abstract context.

It must be pointed out that the literature for this subject can more than
often be disappointing. For instance, the main reference used for this work
[2], should be considered as an excellent general guide to the subject of com-
bustion theory, but many proofs are either sketchy or simply wrong. The
author had to consult the original references, in order to correct several ar-
guments appearing in this book. The book [7] was found to be an excellent
reference, because it is both mathematically complete and well motivated.

49
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Consequently, the author recommends the reading of [2] with constant con-
frontation with the original references for the results being studied.



Appendix A

Limits, Inferior Limits and
Superior Limits

In this section R will denote the set R ∪ {+∞,−∞} of extended reals. R is
endowed with a metric D defined as follows.

D(x, y) = |µ(x)− µ(y)| (A.1)

where

µ(x) =





x
1+|x| if x ∈ R

1 if x = +∞
−1 if x = −∞

(A.2)

It is easy to verify that the function µ : (R, D) → ([−1, 1], d) where d(x, y) =
|x− y|, is an isometry of metric spaces. Also, notice that every A ⊂ R has a
supremum and an infimum. A sequence of extended real numbers will mean
a function f : N→ R.

Definition 24 Let f be a sequence of extended real numbers.

1. We say that f converges to L ∈ R if D(f(n), L) converges to zero in
the usual sense. In this case, L is called the limit of f and is denoted
by limn→∞ f(n).

2. We define the inferior limit of f , as

lim inf
n→∞ f(n) := sup { inf { f(l) : l ≥ k } : k ∈ N },

3. and the superior limit of f , as

lim sup
n→∞

f(n) := inf { sup { f(l) : l ≥ k } : k ∈ N }
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Notice that h(k) = inf { f(l) : l ≥ k } is also a sequence of extended
real numbers, and that it is nondecreasing, that is, h(k1) ≤ h(k2) whenever
k1 < k2. (This is due to the fact that if A ⊂ B ⊂ R then inf B ≤ inf A.)
Therefore limn→∞ h(n) always exists and coincides with sup {h(n) : n ∈ N}.
The same is true for the superior limit. It is also the case that if the infe-
rior and superior limits of f coincide and equal an extended real L, then f
converges to L.

Now, if one replaces N by the interval (0,∞), one obtains not only a
generalization of the concept of sequence of extended real numbers but also
of its convergence, inferior limit and superior limit.

Definition 25 Let f : (0,∞) → R be a function.

1. f is said to converge to L ∈ R if D(f(s), L) converges to zero as s
goes to +∞. In this case the extended real number L is called the limit
of f when s goes to infinity, and is denoted by lims→∞ f(s).

2. We define the inferior limit of f as

lim inf
s→∞ f(s) := sup { inf { f(t) : t ≥ s } : s ∈ (0,∞) },

3. and the superior limit of f as

lim sup
s→∞

f(s) := inf { sup { f(t) : t ≥ s } : s ∈ (0,∞) }.

Notice that the function g : (0,∞) → R defined by g(s) = inf{f(t) : t ≥ s}
is defined at each s ∈ (0,∞) and is a nondecreasing function, that is,
g(s1) ≤ g(s2) whenever s1 < s2. This implies that the inferior limit al-
ways exists (in R). For similar reasons, the superior limit always exists. It
is also true that if the inferior and superior limits coincide and equal an
extended real number L, then f converges to L.

Let X be a set and Map(X,R) denote the collection of all functions
from X into R. A sequence of real-valued functions on X is just a function
F : N→ Map(X,R). In this case we can define the notions of limit, inferior
limit and superior limit, as follows.

Definition 26
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1. The sequence of functions F is said to converge to the function h :
X → R if for each x ∈ X, the sequence of extended real numbers
F (·)(x) : N → R converges to h(x). When such an h exists, it is
unique, and it is called the pointwise limit of the sequence of functions
F . It is usually denoted by limn→∞ F (n). Furthermore, the sequence
F is said to converge uniformly to h if for each ε > 0 there is an
N(ε) ∈ N such that if n ≥ N(ε) then D(F (n)(x), h(x)) < ε for every
x ∈ X.

2. The inferior limit of F is the function lim infn→∞ F (n) : X → R
sending each x ∈ X to lim infn→∞ F (n)(x). In words, it sends each
x ∈ X to the inferior limit of the sequence of reals F (n)(x). Equiva-
lently, lim infn→∞ F (n) can be defined as limn→∞ h(n) where for each
n, h(n) : X → R is defined as h(n)(x) = inf{F (k)(x) : k ≥ n}. F
is said to approach lim infn→∞ F (n) uniformly when the sequence of
functions h(n) converges uniformly to its limit limn→∞h(n).

3. The superior limit of F is the function lim supn→∞ F (n) : X → R
sending each x ∈ X to lim supn→∞ F (n)(x). In words, it sends each
x ∈ X to the superior limit of the sequence of reals F (n)(x). Equiva-
lently, lim supn→∞ F (n) can be defined as limn→∞ l(n) where for each
n, l(n) : X → R is defined as l(n)(x) = sup{F (k)(x) : k ≥ n}. F
is said to approach lim supn→∞ F (n) uniformly when the sequence of
functions l(n) converges uniformly to its limit limn→∞l(n).

Notice that the sequence of functions h(n) defined in 2 is nondecreasing,
that is, if n1 < n2 then h(n1)(x) ≤ h(n2)(x) for every x ∈ X. This implies
that limn→∞h(n) always exists. A similar remark applies to the sequence
l(n) where one replaces the word nondecreasing by nonincreasing.

Since specifying a sequence of real-valued functions F : N→ Map(X,R)
is the same as specifying a family {fn}n∈N, where each fn is a function
from X to R, sequences of real-valued functions will be denoted by {fn}n∈N,
{gn}n∈N, etc.

The following basic result is useful in many situations.

Theorem 27 Let (X, d) be a metric space, and let {fn}n∈N be a sequence
of continuous real-valued functions on X. If f := limn→∞ fn exists and
{fn}n∈N converges uniformly to f , then f is continuous.
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Proof. Let x0 be a point in X, and let ε be a positive real number. There
exist δ > 0 and N such that if d(x, x0) < δ then

1. d(f(x), fN (x)) < ε/3,

2. d(fN (x), fN (x0)) < ε/3,

3. d(fN (x0), f(x0)) < ε/3,

and therefore

d(f(x), f(x0)) ≤ d(f(x), fN (x)) + d(fN (x), fN (x0)) + d(fN (x0), f(x0))
< ε/3 + ε/3 + ε/3
= ε.

If one replaces N by the interval (0,∞) one obtains the notion of uni-
parametric family of functions and of its convergence and limit, inferior limit
and superior limit.

Definition 28 An uniparametric family of real-valued functions on X is a
function F : (0,∞) → Map(X,R). For each s > 0, the function from X to
R sending x ∈ X to F (s)(x) will be denoted by Fs and to the entire family
by {Fs}s∈(0,∞).

From here on we will denote uniparametric families by {φs}s∈(0,∞), {ψs}s∈(0,∞),
etc.

Definition 29 Let {φs}s∈(0,∞) be an uniparametric family of extended real-
valued functions on X.

1. {φs}s∈(0,∞) is said to converge to the function h : X → R if for each
x ∈ X, the function φ·(x) : (0,∞) → R converges to h(x). When such
an h exists, it is unique, and it is called the pointwise limit of the
family {φs}s∈(0,∞). It is usually denoted by lims→∞ φs. Furthermore,
the family {φs}s∈(0,∞) is said to converge uniformly to h if for each ε >
0 there is an S(ε) ∈ (0,∞) such that if s ≥ S(ε) then D(φs(x), h(x)) <
ε for every x ∈ X.

2. The inferior limit of {φs}s∈(0,∞) is the function lim infs→∞ φs : X → R
sending each x ∈ X to lim infs→∞ φs(x). In words, it sends each x ∈ X
to the inferior limit of the function φ·(x) : (0,∞) → R.



55

3. The superior limit of {φs}s∈(0,∞) is the function lim sups→∞ φs : X →
R sending each x ∈ X to lim sups→∞ φs(x). In words, it sends each
x ∈ X to the superior limit of the function φ·(x) : (0,∞) → R.

We also have in this case the following basic result.

Theorem 30 Let (X, d) be a metric space, and let {φs}s∈(0,∞) be an uni-
parametric family of continuous real-valued functions on X. If ψ := lims→∞ φs

exists and {φs}s∈(0,∞) converges uniformly to ψ, then ψ is continuous.

Proof. Let x0 be a point in X, and let ε be a positive real number. There
exist δ > 0 and S > 0 such that if d(x, x0) < δ then

1. d(ψ(x), φS(x)) < ε/3,

2. d(φS(x), φS(x0)) < ε/3,

3. d(φS(x0), ψ(x0)) < ε/3,

and therefore

d(ψ(x), ψ(x0)) ≤ d(ψ(x), φS(x)) + d(φS(x), φS(x0)) + d(φS(x0), ψ(x0))
< ε/3 + ε/3 + ε/3
= ε.

Let us see that the inferior limit of an uniparametric family is always
the pointwise limit of another uniparametric family which is nondecreasing.
More precisely, let {φs}s∈(0,∞) be an uniparametric family and let h denote
its inferior limit. Now for each s ∈ (0,∞) let us define a function ψs : X → R
by

ψs(x) = inf {φt(x) : t ≥ s}.
The family {ψs}s∈(0,∞) is monotone increasing in the following precise sense:
if 0 ≤ s1 < s2 then ψs1(x) ≤ ψs2(x) for each x ∈ X. This immediately fol-
lows since {φt(x) : t ≥ s2} ⊂ {φt(x) : t ≥ s1} and inf A ≤ inf B whenever
B ⊂ A ⊂ R.

The following lemma will be used in proving Theorem 32. Let (X, d) be
a metric space. Remember that a family of functions {fα : α ∈ A} where
each fα is a function from X to R, is said to be equicontinuous if for every
ε > 0 there is a δ(ε) > 0 such that for each α ∈ A, |fα(x) − fα(y)| < ε
whenever d(x, y) < δ(ε).
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Lemma 31 Let (X, d) be a metric spaces, and let {fα : α ∈ A} be an
equicontiunous family of functions from X to [0,∞). Then the function g :
X → [0,∞) defined by g(x) = inf{fα(x) : α ∈ A}, is uniformly continuous,
and therefore continuous.

Proof. Let us fix ε > 0. There is a number δ > 0 such that for each
α ∈ A, |fα(x)− fα(y)| < ε/2 whenever d(x, y) < δ. There exists an index α′

such that |fα′(x) − g(x)| < ε/2. Since |fα′(x) − fα′(y)| < ε/2, the triangle
inequality tells us that

|g(x)− fα′(y)| < ε (A.3)

On the other hand, we know that

g(x) ≤ fα′(y) (A.4)

Combining inequalities (B.1) and (A.4) we obtain the inequality

g(y) ≤ g(x) + ε. (A.5)

Interchanging the roles of x and y we obtain

g(x) ≤ g(y) + ε. (A.6)

But the last two inequalities imply that |g(x)− g(y)| ≤ ε. This proves that
g is uniformly continuous, and therefore that it is continuous.

Theorem 32 Let s0 be a positive real number and let {φs}s∈[s0,∞) be an
uniparametric family of [0,∞)-valued functions on a compact metric space
(X, d). Assume that the family is equicontinuous and that it approaches
uniformly the function ψ := lim infs→∞ φs. If ψ(x) > 0 for every x ∈ X,
then there is a β > 0 and a s1 ≥ s0 such that φs(x) > β for every s ≥ s1

and x ∈ X.

Proof. For each s ∈ [s0,∞) define the function ψs : X → [0,∞) as
ψs(x) = inf{φt(x) : t ≥ s}. Since the family {φt}t∈[s,∞) is equicontinuous,
Lemma 31 implies that each ψs is a continuous function. Since the family of
(continuous) functions ψs converges uniformly to ψ, we have that ψ is also a
continuous function. This fact, together with the compactness assumption
on X, shows that ψ attains an absolute minimum value m. The number m
must be strictly positive because we have assumed that ψ(x) > 0 for every
x ∈ X. The fact that the family {ψs}[s0,∞) is nondecreasing (i.e. if s1 < s2

then ψs1(x) ≤ ψs2(x)) and approaches ψ uniformly implies that there ex-
ists a s1 ∈ [s0,∞) such that if s ≥ s1 then |ψs(x) − ψ(x)| < m

2 for every
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x ∈ X. In particular this implies that −m
2 < ψs(x)− ψ(x) for each x ∈ X,

and therefore that ψ(x) − m
2 < ψs(x) for each x ∈ X. But we have that

m ≤ ψ(x) for each x ∈ X. We conclude that for each s ≥ s1, m
2 < ψs(x)

for every x ∈ X. This means that m
2 < inf{φt(x) : t ≥ s} for every x ∈ X,

which in turn implies that for each t ≥ s1, m
2 < φt(x) for every x ∈ X.
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Appendix B

The Interior Ball Condition

Definition 33 Let Ω be an open set in Rn. Then Ω is said to satisfy the
interior ball condition at x ∈ ∂Ω if there exists an open ball B ⊂ Ω such
that x ∈ B.

Definition 34 An open set Ω ⊂ Rn is said to be of class C2 if its boundary
∂Ω is an (n − 1)−dimensional manifold of class C2, that is, for each x =
(x1, . . . , xn) ∈ ∂Ω there exist:

1. an open set Nx ⊂ Rn containing x,

2. an index 1 ≤ i ≤ n,

3. an open set Ux ⊂ Rn−1 containing the point (x1, . . . , xi−1, xi+1, . . . , xn)
and

4. a function hx : Ux → R in C2(Ux)(see section C.1 for the definition),

such that

∂Ω ∩Nx =
{(z1, . . . , zi−1, hx(z), zi, . . . , zn−1) : z = (z1, . . . , zn−1) ∈ Ux}

Theorem 35 If Ω is of class C2 then it satisfies the interior ball condition
at each x ∈ ∂Ω.

Proof. We will assume without loss of generality that x = (0, . . . , 0), i = n,
∂hx
∂zj

(0, . . . , 0) = 0 for j = 1, . . . , n− 1 and

Ω∩Nx = {(z1, . . . , zn) ∈ Nx : (z1, . . . , zn−1) ∈ Ux and zn ≥ hx(z1, . . . , zn−1)}

59
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Notice that

∂Ω∩Nx = {(z1, . . . , zn) ∈ Nx : (z1, . . . , zn−1) ∈ Ux and zn = hx(z1, . . . , zn−1)}
Taylor’s theorem in several variables tells us that

hx(z1, . . . , zn−1) = hx(0, . . . , 0) +
n−1∑

j=1

zj
∂hx

∂zj
(0, . . . , 0)+

1
2

n−1∑

j,k=1

zjzk
∂2hx

∂zj∂zk
(0, . . . , 0) + R2(z1, . . . , zn−1)

=
1
2

n−1∑

j,k=1

zjzk
∂2hx

∂zj∂zk
(0, . . . , 0) + R2(z1, . . . , zn−1)

where R2(z1, . . . , zn−1)/(z2
1 + · · ·+ z2

n−1) → 0 as z2
1 + · · ·+ z2

n−1 → 0. This
last condition guarantees that there exists an open set U ′

x ⊂ Ux containing
(0, . . . , 0) ∈ Rn−1 such that R2(z1, . . . , zn−1) < z2

1 + · · · + z2
n−1 for each

(z1, . . . , zn−1) ∈ U ′
x. It follows that

hx(z1, . . . , zn−1) <
1
2

n−1∑

j,k=1

zjzk
∂2hx

∂zj∂zk
(0, . . . , 0) + z2

1 + · · ·+ z2
n−1 (B.1)

for each (z1, . . . , zn−1) ∈ U ′
x. Notice that the right hand side of (B.1) is a

quadratic form, which we will denote by q, whose defining matrix is real
and symmetric. By a well known theorem of Linear Algebra, there exists an
orthogonal change of coordinates (z1, . . . , zn−1) → (z′1, . . . , z

′
n−1) such that

q(z′1, . . . , z
′
n−1) = λ1(z′1)

2 + . . . + λn−1(z′n−1)
2 where λ1, . . . , λn−1 are real

numbers not necessarily different from each other. Let λ > 0 be a number
strictly greater than all of the λ′is. It can be seen that the open ball B′ in
coordinates (z′1, . . . , z

′
n−1, zn) centered at (0, . . . , 0, 1/(2λ)) and having radius

1/(2λ) is contained in the set {(z′1, . . . , z′n−1, zn) : zn > q(z′1, . . . , z
′
n−1)}. By

passing (if necessary) to an open ball B′′ centered at (0, . . . , 0, r) and having
radius r for some r < 1/(2λ), one can guarantee that the corresponding
open ball B in the original (z1, . . . , zn) coordinates is contained in Ω and
(0, . . . , 0) ∈ B, as desired.

Definition 36 (Outward Unit Normal Vector) Let Ω be an open set in Rn

and let x ∈ ∂Ω. Let us suppose that there exists an open ball B ⊂ Ω such that
x ∈ B. The vector

−→
Ox

‖−→Ox‖ where O is the center of B, is called the outward

unit normal vector of Ω at x and is denoted by ν(x).
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Remark 37

1. Is is important to notice that the outward unit normal vector of Ω at
x does not depend on the choice of ball B.

2. When ∂Ω is C2, then in a point x ∈ ∂Ω the interior ball property
condition is satisfied and ν(x) can be defined as above.
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Appendix C

Function Spaces

Let us briefly recall the multiindex notation for partial derivatives of func-
tions. Let U be an open set in Rn and let f : U → R be a function. A
multiindex is an n-tuple α = (α1, . . . , αn) of nonnegative integers and its
order is defined as |α| = α1 + . . . + αn. Given a multiindex α, Dαf(x)
denotes the partial derivative

∂|α|f(x)
∂xα1

1 . . . ∂xαn
n

for each x ∈ U . We observe that the multiindex notation is generally used
only on functions for which the differentiation order is unimportant.

C.1 Ck(U), Ck(U)

Let k ≥ 0 be an integer. A function f : U → R is said to be of class Ck in U ,
or equivalently, to belong to Ck(U) if for every multiindex α with |α| ≤ k,
the function Dαf : U → R is defined and continuous at every x ∈ U . It
is also important to consider the space of function defined as follows. A
function f : U → R is said to belong to the class Ck(U) if f |U ∈ Ck(U)
and for each α with |α| ≤ k, the function Dα(f |U ) is uniformly continuous
on each bounded subset of U , i.e. for each bounded set A ⊂ U and each
ε > 0 there exists a δ(ε) > 0 such that |Dαf(x) − Dαf(y)| < ε whenever
‖x− y‖ < δ(ε), for every x, y ∈ A.
It is clear that if k > k′ then Ck(U) ⊂ Ck′(U) and Ck(U) ⊂ Ck′(U).

There is an alternative way to describe the Ck(U) spaces which is im-
portant to be aware of. It is an immediate consequence of the following

63
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lemma.

Lemma 38 Let U ⊂ Rn be an open set, and let g : U → R be a continuous
function. Then there exists a continuous function g : U → R such that
g(x) = g(x) for every x ∈ U if and only if g is uniformly continuous in
every bounded subset of U . Furthermore, such extension is unique.

Proof. Let us assume that such g exists. Let A ⊂ U be a bounded set.
Since A ⊂ U , the function g is defined and continuous on A. Now, A is
closed and bounded, and therefore it is compact. This, combined with the
standard fact that a continuous function defined on a compact set is also
uniformly continuous, implies that g|A = g|A is uniformly continuous.

Conversely, let us assume that g : U → R is uniformly continuous when re-
stricted to each bounded subset of U . Let x0 be a point in ∂U . Then there
exists a sequence {xn} of points in U converging to x0. Let us see that the
sequence of real numbers {g(xn)} satisfies the Cauchy condition. Let us fix
an ε > 0. Since the set A = {xn : n ≥ 1} is a bounded subset of U and the
restriction of g to A is uniformly continuous, there exists a number δ > 0
such that if ‖x− y‖ < δ then |g(x)− g(y)| < ε for each x, y ∈ A. Now, the
convergence of {xn} implies that there exists N such that ‖xm − xn‖ < δ
whenever m, n ≥ N . So, if m,n ≥ N we have that | g(xm)− g(xn) |< ε.

Having confirmed that {g(xn)} is a sequence of real numbers satisfying the
Cauchy condition, the completeness of the reals guarantees that its limit
exists. Let us denote this limit by Lx0 . This limit is independent of the
particular sequence {xn} we chose. In fact, suppose we had chosen another
sequence {yn} converging to x0. The uniform continuity of the restriction of
g to the bounded set {xn : n ≥ 1}∪{yn : n ≥ 1}, combined with the fact that
‖xn − yn‖ approaches zero as n goes to infinity, tells us that |g(xn)− g(yn)|
also approaches zero as n goes to infinity. This implies that the limits of
{g(xn)} and {g(yn)} coincide. Let us define the function g : U → R as
g(x) = g(x) if x ∈ U and g(x) = Lx if x ∈ ∂U .
We claim that g is continuous on U . Since g coincides with g in the open
set U it immediately follows that g is continuous at every point in U . Let
x0 be a point in ∂U and let {zn} be a sequence in U converging to x0. The
construction of g and the fact that each zn belongs to U , guarantee that for
each n there exists a point xn ∈ U such that i) ‖xn − zn‖ < 1/n and ii)
|g(xn) − g(zn)| < 1/n. Now, i) implies that {xn} converges to x0, making
{g(xn)} = {g(xn)} converge to Lx0 = g(x0). On the other hand, ii) implies
that {g(zn)} has the same limit as {g(xn)}, namely g(x0). This confirms
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the continuity of g at x0. We conclude that g is continuous on U as claimed.

Finally, let h : U → R be a continuous function admitting continuous exten-
sions h1, h2 : U → R. Let us see that these functions are necessarily equal. If
x ∈ U then h1(x) = h2(x) because they are both extensions of h. If x ∈ ∂U
then there exists a sequence {xn} of points in U converging to x. Now, the
continuity of h1 and h2 implies that the sequences {h1(xn)} and {h2(xn)}
converge to h1(x) and to h2(x), respectively. But since both sequences are
the same as the sequence {h(xn)}, we conclude that h1(x) = h2(x).

As a consequence, the space Ck(U) can be defined as the set of functions
f : U → R such that f |U ∈ Ck(U) and for each multiindex α with |α| ≤ k,
the function Dαf : U → R admits a continuous extension Dαf : U → R. In
this case, the function Dαf is usually denoted by Dαf .

C.2 Hölder Spaces

Let U be an open set in Rn, and 0 < γ ≤ 1. A function f : U → R is said
to be Lipschitz continuous if there exists a positive constant C such that

|f(x)− f(y)| ≤ C‖x− y‖ (C.1)

for every x, y ∈ U . Notice that this condition implies that f is continuous.
Now f is said to be Hölder continuous with exponent γ if there is a positive
constant C such that f satisfies the inequality

|f(x)− f(y)| ≤ C‖x− y‖γ (C.2)

for every x, y ∈ U . Let k ≥ 0 be an integer. The Hölder space Ck,γ(U)
is defined as the set of functions f ∈ Ck(U) all of whose kth order partial
derivatives are bounded and Hölder continuous with exponent γ.
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