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Abstract

This article explores the Adomian decomposition method applied to the pricing
of European call options in a risk-neutral world with an asset that pays and one that
does not pay dividends. A brief introduction to existing methods of pricing, a nu-
merical solution of the Black–Scholes equation, a construction of a payoff function
consistent with the method, and finally some numerical results for a hypothetical
experiment are given.
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1 Introduction
An option is a security that gives its owner the right to trade in a fixed number of shares
of a specified common stock at a fixed price at any time on or before a given date. The
act of making this transaction is referred to as exercising the option. The fixed price is
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termed the strike price, and the given date is termed the expiration date. A call option
gives the right to buy the share while a put option gives the right to sell the share.

The option pricing problem has been treated using various numerical methods, e.g.,
Monte Carlo simulation, binomial trees, and finite difference methods. [7] presents two
direct methods, a pathwise method and a likelihood ratio method, for estimating deriva-
tives of security prices using simulation. It is important to remember that simulation
has proved to be a valuable tool for estimating those prices for which simple closed
form solutions do not exist. The main advantage of direct methods over simulation is
increased computational speed.

[9] presents a simple discrete-time model for valuing options, using the Black–
Scholes model. By its very construction, it gives rise to a simple and efficient numerical
procedure for valuing options for which premature exercise is optimal. It should now be
clear that whenever stock price movements conform to a discrete binomial process or to
a limiting form of such a process, options can be priced solely on the basis of arbitrage
considerations. Indeed, we could have significantly complicated the simple binomial
process while still retaining this property. [11] presents a new method for pricing Amer-
ican options along with an efficient implementation procedure. The proposed method
is efficient and accurate in computing both option values and various option hedge pa-
rameters. It also suggests how the method can be applied to the case of any American
option for which a closed-form solution exists for the corresponding European option.
The method presented has some attractive features. First, since its implementation is
based on using an analytical formula for both option values and hedge parameters, the
latter are computed directly rather than by perturbation of the option pricing formula.
Second, as a result, the computation is both efficient and accurate, since the analytical
formula involves only univariate integrals.

Numerical approximations of contingent claim partial differential equations (PDEs)
are quickly becoming one of the most accepted techniques used in derivative security
valuation. The most common methodology is the finite difference method (FDM). This
procedure can be used as long as a well-posed PDE can be derived and therefore lends
itself to contingent claims. The FDM requires prescribed conditions at the boundary.
These boundary conditions are not readily available (at all boundaries) for most contin-
gent claim PDEs. [8] presents an accurate and computationally inexpensive method for
providing these boundary conditions. These absorbing and adjusting boundary condi-
tions when applied to the contingent claim PDEs presented in this study increased the
accuracy of the FDM solution at relatively little cost.

The Adomian decomposition method has been used to solve various equations. It is
important first to know that in [2], George Adomian presented stochastic systems which
define linear and nonlinear equations and different solution methods. In [4], nonlinear
transformation of series are used together with the Adomian decomposition method.
In [13], the efficiency and power of the technique is shown for wide classes of equations
of mathematical physics. The analytical solutions for linear, one-dimensional, time-
dependent partial differential equations subject to initial or lateral boundary conditions
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are reviewed and obtained in the form of convergent Adomian decomposition power se-
ries with easily computable components. [3] defines the decomposition method, which
can be an effective procedure for the analytical solution of a wide class of dynamical
systems without linearization or weak nonlinearity assumptions, closure approxima-
tions, perturbation theory, or restrictive assumptions on stochasticity. Finally [10] ex-
plains how the Adomian decomposition method is used to give explicit and numerical
solutions of three types of diffusion-convection-reaction (DCRE) equations. The calcu-
lations are carried out for three different types of the DCRE such as the Black–Scholes
equation used in financial market option pricing and the Fokker–Planck equation from
plasma physics. The behaviour of the approximate solutions of the distribution func-
tions is shown graphically and compared with that obtained by other theories such as
the variational iteration method.

2 Adomian Decomposition Method for Black–Scholes

The classical Black–Scholes model of option pricing [5] assumes that the underlying
dynamic behavior is associated with a linear homogeneous stochastic differential equa-
tion given by

dxt = µxt + σxtdBt,

where t ∈ [0, T ], µ ∈ R, σ > 0, and {Bt}t≥0 is a one-dimensional standard Brownian
motion. This model states that without making assumptions about the preferences of
investors, one can obtain an expression for the value of options not directly dependent
on the expected performance of the underlying stock or the option. The assumptions on
which it is based form an ideal setting in which continuous negotiation is possible in a
perfect market in which the interest rate is constant and risk free [1, 12].

An alternative method to numerically solve the Black–Scholes equation is the Ado-
mian decomposition method [6], which is based on representing the solution as a series
of functions, where each term is obtained by a polynomial expansion. In addition, this
technique provides solutions for nonlinear partial differential equation such as partial
differential equation of Black–Scholes type, which can be written [14] as

∂U

∂t
+

1

2
σ2x2

∂2U

∂x2
+ (r − δ)x∂U

∂x
− ru = 0, (2.1)

where r is the risk free rate, σ is the volatility, and δ is the dividend. The boundary
condition for this equation is given by

u(x, T ) = g(x) = max{x−K, 0}, (2.2)

where K is the strike price and T is the expiration date. We now describe the Adomian
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decomposition method [3] for the general problem
N∑
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Gnu(x, 0) = gn(x), 0 ≤ n ≤ N − 1,
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Now considering the equation (2.1), we use the values N = 1, M = 2, f = 0, α0 = r,

α1 = −1, β0 = 0, β1 = (r − δ)x, β2 =
1

2
σ2x2 (see [6]). Applying them to equations

(2.1) and (2.2), we obtain
u0(x, t) = g(x), (2.3)

and for k ∈ N0,
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(2.4)

The sequence defined recursively in (2.3) and (2.4) can be represented explicitly [6] as
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for all k ∈ N0, where ρm =

(
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σ2m+ r

)
(m − 1) − δ for all m ∈ N0, and g is a

function that has derivatives of all orders.
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3 Construction of an Approximate Payoff Function
To use the Adomian decomposition, we will construct a function that meets two condi-
tions: It has derivatives of all orders and is “consistent” with the payoff of a European
call option, max{ST −K, 0}, where ST is the stock price at time T and K is the strike
price. Figure 3.1 shows the graph of the payoff of a European call option. As this func-

Figure 3.1: Payoff of a European call option with K = 80

tion is not differentiable at K, it cannot be used for the Adomian decomposition method
of the Black–Scholes equation [6]. To find another function g, we perform a rotation
and translation of axes of a hyperbola, taking into account the transformations{

x̃ = (x−K) cos θ + y sin θ,

ỹ = −(x−K) sin θ + y cos θ.
(3.1)

The equation of a hyperbola with center (0, 0) is given by

ỹ2

b2
− x̃2

a2
= 1. (3.2)

Substituting (3.1) in (3.2) and solving for y, we obtain

y =
(x−K)B +

√
(x−K)2(B2 − 4cd) + 4da2b2

2d
,

where

B = sin(2θ)(a2 + b2), c = a2 sin2 θ − b2 cos2 θ, d = a2 cos2 θ − b2 sin2 θ.

For the special case when b = a tan θ, with θ =
π

8
, this function can be rewritten as

g(x) =
1

2
(x−K) +

1

2

√
(x−K)2 + 2a2(

√
2− 1).
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Proposition 3.1 (Convergence and analyticity). Let x0 ∈ R+ and consider

gn(x0) =
1

2
(x0 −K) +

1

2

√
(x0 −K)2 + 2a2n(

√
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1

n
, n ∈ N.

Then gn is analytic and

lim
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Proof. We have

lim
n→∞

gn(x0) = lim
n→∞

1

2
(x0 −K) +

1

2

√
(x0 −K)2 +

2(
√
2− 1)

n2


=

1

2
(x0 −K) +

1

2

√
(x0 −K)2

=
1

2
(x0 −K) +

1

2
|x0 −K|

=

{
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= max{x0 −K, 0}.

Consider now the functions g1 and g2 defined by

g1(x) =
√
x and g2(x) = (x−K)2 + 2a2n(

√
2− 1).

Note that both g1 and g2 are analytic functions, and hence so is g1 ◦ g2 = gn.

Figure 3.2 shows the sequence of gn converging to the payoff of a European call
option.

Figure 3.2: Graph of the convergence of the sequence gn to the payoff of a European
call option with n = 1, 10, 100 and K = 30
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4 Experimental Numerical Results

4.1 Risk-Neutral Pricing of Nondivident Paying Assets

We give some experimental numerical results for the valuation of a European call option
on a nondivident paying asset in a risk-neutral world. We use the Adomian decompo-
sition method with different expiration times and compare it with the results obtained
using the Black–Scholes formula. Table 4.1 presents a comparison of the valuation of

Figure 4.1: Pricing of a European call option with the Adomian decomposition method
in a risk-neutral world with S0 = 65, K = 40, σ = 0.324366, r = 0.05, δ = 0, k = 14,
(a) T = 1/4, (b) T = 1/6, (c) T = 1/12

a European call option on a nondivident paying asset in a risk-neutral world using the
Adomian decomposition method (12 iterations) with other numerical methods such as
Monte Carlo Simulation (4000 trajectories), the binomial tree method (200 steps), ex-
plicit finite differences, and the Black–Scholes formula. In Figure 4.1 we can see that

Table 4.1: Comparison of the results obtained for the valuation of a European call option
on a nondivident paying asset in a risk-neutral world with different methods and the
Black–Scholes equation (S0 = 65, K = 40, σ = 0.324366, r = 0.05, δ = 0 for
T = 1/4, T = 1/6, T = 1/12). The last column shows the relative error of the price
obtained by the Adomian decomposition method

Time Adomian Monte Binomial Explicit Black– relative
Price Carlo Trees Finite Scholes error

Simulation Price Difference Price (in %)
Price Price

1/4 25.4965 25.3034 25.3248 25.3535 25.4993 0.0106
1/6 25.3319 25.2173 25.2658 25.0037 25.3321 0.000611
1/12 25.1663 25.1289 25.1330 24.9485 25.1663 0.000000288

as the time step is smaller, ADM produces better results, which is noteworthy since the
relative errors are becoming smaller. Figure 4.2 shows the behavior of the absolute error
compared to the Black–Scholes formula. In the three graphs it can be seen that the error
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tends to zero, which refers to the closeness between the actual price and the price found
by the Adomian decomposition method.

Figure 4.2: Convergence of Adomian decomposition method for a European call option
on a nondivident paying asset in a risk-neutral world with S0 = 65, K = 40, σ =
0.324366, r = 0.05, δ = 0, k = 14, (a) T = 1/4, (b) T = 1/6, (c) T = 1/12. The
absolute error was calculated in comparison with the Black–Scholes formula

4.2 Risk-Neutral Pricing of Divident Paying Assets

We give some numerical results for the valuation of a European call option on a divi-
dend paying asset in a risk-neutral world. We use the Adomian decomposition method
with different expiration times and compare it with the results obtained using the Black–
Scholes formula. Table 4.2 presents a comparison of the valuation of a European call

Figure 4.3: Pricing of a European call option with the Adomian decomposition method
in a risk-neutral world with S0 = 65, K = 40, σ = 0.324366, r = 0.05, δ = 0.02,
k = 14, (a) T = 1/4, (b) T = 1/6, (c) T = 1/12

option on a divident paying asset in a risk-neutral world using the Adomian decomposi-
tion method (12 iterations) with other numerical methods such as Monte Carlo Simula-
tion (4000 trajectories), the binomial tree method (200 steps), explicit finite differences,
and the Black–Scholes formula. We see that the results are close to each other. Figure
4.3 shows these results, illustrating that the relative errors are small, indicating that the
Adomian decomposition method yields good results. Figure 4.4 shows the behavior of
the absolute error compared to the Black–Scholes formula. In the three graphs it can be
seen that the error tends to zero, which refers to the closeness between the actual price
and the price found by the Adomian decomposition method.
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Table 4.2: Comparison of the results obtained for the valuation of a European call option
on a divident paying asset in a risk-neutral world with different methods and the Black–
Scholes equation (S0 = 65, K = 40, σ = 0.324366, r = 0.05, δ = 0.02 for T = 1/4,
T = 1/6, T = 1/12). The last column shows the relative error of the price obtained by
the Adomian decomposition method

Time Adomian Monte Binomial Explicit Black– relative
Price Carlo Trees Finite Scholes error

Simulation Price Difference Price (in %)
Price Price

1/4 25.1724 25.1754 25.2948 26.3007 25.1753 0.0119
1/6 25.1156 25.1158 25.1956 26.1996 25.1158 0.000683
1/12 25.0580 25.0580 25.0979 26.0999 25.0580 0.000000319

Figure 4.4: Convergence of Adomian decomposition method for a European call option
on a divident paying asset in a risk-neutral world with S0 = 65, K = 40, σ = 0.324366,
r = 0.05, δ = 0.02, k = 14, (a) T = 1/4, (b) T = 1/6, (c) T = 1/12. The absolute
error was calculated in comparison with the Black–Scholes formula

5 Conclusions

We have constructed a payoff function which is suitable for the implementation of the
Adomian decomposition method because it meets the necessary conditions: It is non-
negative, infinitely often differentiable, and consistent with the payoff of a European
call option in the sense that it converges pointwise to that payoff function. When con-
sidering the rotation and translation of axes, it is natural that the exercise price must be
less than the initial price. On the other hand, this analysis can be extended to a European
put option considering a corresponding nonpositive payoff function.

The results obtained by the Adomian decomposition method are pretty close to those
obtained by other numerical methods such as Monte Carlo simulation, the binomial
tree method, and explicit finite differences, suggesting that the Adomian decomposition
method is a powerful method that can be used in the valuation of options of any kind.
However, the method implementation can generate a large computational cost because
it requires the calculation of a significant number of derivatives, some positive and some
negative, to be offset as the iterations increase. The method converges rapidly as the nu-
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merical experiments support the conclusion that a small number of iterations is enough
to find a favorable outcome. Also when the time of expiration of the option is small, the
method gives better results.

For future work one could extend this analysis by performing a valuation of Eu-
ropean options, both call and put, in a real world or physical world on assets whose
dynamic behavior can be modeled by processes of mean reversion, which include inter-
est rates, oil, aluminum, and natural gas, among others.
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