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Dept. of Math., Universidad Nacional de Colombia, Medelĺın, Colombia
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Abstract. We study graded Lie algebras whose transformation pa-
rameters are graded q-commutativive and r-associative. We study first
some graded algebras over a field, with no zero divisors at the level
of monomials in their graded algebra generators. These generators
are q-commutative and r-associative. We address the cohomology of
the q-function and r-functions, in particular we study quaternions and
octonions. We then define algebras whose transformation parameters
are q-commutative and r-associative. We address a generalization of
a theorem by Scheunert on its relation to Lie (super)algebras. We
show finally that for the cases studied by Scheunert there is always
a real and faithful transformation parameter basis with the required
q-commutativity. We use this basis to perform a transformation on the
graded Lie algebra that relates it to a plain Lie (super)algebra while
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1. Introduction

We want to define and study a generalization of Lie algebras to in-
clude transformation parameters with noncommutative and/or nonasso-
ciative properties. In order to do so, we study first a particular type of
algebras called finite perfect algebras. These algebras together with the
Grassmann algebras will provide the necessary ingredients to construct a
wide variety of graded noncommutative nonassociative algebras called finite
quasi–perfect algebras. We define then graded Lie algebras whose trans-
formation parameters generate a finite quasi–perfect algebra. We address
finally the possibility of relating such graded algebras with ordinary Lie
(super)algebras, trying to generalize results by Scheunert[3] on epsilon or
color Lie (super)algebras. We study finally the existence of such relations
respecting self-adjointness.

2. Finite perfect and quasi-perfect algebras

Let G be a finite abelian group. Let A be a G-graded algebra over a
commutative field K, which as a vector space can be generated by a basis
set {va|a ∈ G}, with va 6= 0 ∀a ∈ G. We assume that A has no zero
divisors at the level of monomials in such basis elements (i.e. no finite
product of va’s is zero). We will call an algebra A (which is not necessarily
commutative and associative) a finite perfect algebra [5],[9]. From this
definition it follows that the structure constants Ca,b ∈ K attached to the
basis {va|a ∈ G}, where

va · vb = Ca,b va+b, (1)

are all nonzero (since no zero divisors) i.e.

C : G × G → K
∗
, (a, b) 7→ Ca,b 6= 0. (2)

In order to analyze noncommutativity and nonassociativity in this type
of algebras we define the following parameters:

qa,b = Ca,b (Cb,a)
−1 (3)

ra,b,c = Cb,c (Ca+b,c)
−1

Ca,b+c (Ca,b)
−1

, (4)

where the exponents “-1” denote the multiplicative inverses in K.

From (1-4) we obtain

va · vb = qa,b vb · va, (5)

va · (vb · vc) = ra,b,c (va · vb) · vc. (6)
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Accordingly, the q- and r-functions

q : G × G → K
∗
, (a, b) 7→ qa,b 6= 0, (7)

r : G × G × G → K
∗
, (a, b, c) 7→ ra,b,c 6= 0, (8)

will characterize the noncommutative and nonassociative properties (of the
finite perfect algebra) respectively. These particular types of noncommu-
tativity and nonassociativity are called diagonal noncommutativity and
diagonal nonassociativity respectively, since they involve just the exchange
of factors in the former, and just the alteration of parentheses in the latter
case.

A finite perfect algebra is called unital or with unit “1” if we can adopt
a basis such that for o ∈ G, the neutral element, vo = 1, and 1 ·va = va ·1 =
va ∀a ∈ G. This leads to:

qo,a = qa,0 = 1, ro,a,b = ra,o,b = ra,b,o = 1, ∀a, b ∈ G. (9)

If each basis element va produces a different set of q- and r-factors un-
der exchange of factors or rearrangement of parenthesis as any other basis
element, the algebra is called faithful [5], i.e.

∀a, b ∈ G, a 6= b, ∃ c, u ∈ G such that

qa,c 6= qb,c or qc,a 6= qc,b or

ra,c,u 6= rb,c,u or rc,a,u 6= rc,b,u or rc,u,a 6= rc,u,b. (10)

We will study some basic properties of the q- and r-functions first and
then we will analyze them using group cohomology.

We consider constrains arising from quadratic monomial in the genera-
tors:

va · vb = qa,b vb · va = qa,b qb,a va · vb. (11)

Since A has no zero divisors at the level of monomials, we have that

qa,a = 1, (for the case b = a); (12)

qa,b qb,a = 1, (for the case b 6= a). (13)

We consider now cubic monomial generators and rearrangements using
exchange of factors (in the same parenthesis) or alternation of parentheses:

va · (vb · vc) = qa,b+c (vb · vc) · va, (14)

va · (vb · vc) = ra,b,c qa,b (rb,a,c)
−1

qa,c rb,c,a (vb · vc) · va, (15)

va · (vb · vc) = ra,b,c qa+b,c qa,b rc,b,a qc,b (vb · vc) · va. (16)

The order in which the rearrangements are done is the same as the order in
which the q- and r-factors appear. From the previous identities, we obtain
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the constraint:

qb,c q
−1
a+b,c qa,b+c q

−1
a,b = ra,b,c rc,b,a =

= qa,c qb,c q
−1
a+b,c ra,b,c(rb,a,c)

−1
rb,c,a. (17)

Observe that if all r-factors are trivial (r=1) then we get a concrete con-
straint on the q-function just asserting that the q-function of jumping over
a product of two factors is the same as jumping the first and then jumping
the second. A q-function of such characteristics was defined by Scheunert
[3]. A function q is called a “commutation factor on an abelian group G”
if the following conditions are fulfilled:

q(a, b)q(b, a) = 1, (18)

q(a, b + c) = q(a, b)q(a, c), (19)

q(a + b, c) = q(a, c)q(b, c), ∀a, b, c ∈ G. (20)

This includes the constraint (13) from quadratic monomials, but not (12).
This will allow to include the q-factors characterizing exterior or Grassmann
algebras. In the finite perfect algebra case, if q is a “commutation factor
on G” then (17) becomes:

1 = ra,b,c rc,b,a, (21)

1 = ra,b,c rc,a,b rb,c,a. (22)

We observe that these identities result from handling the constraints
on q-factors and r-factors separately, so for that a q satisfying (19-20) is
also called a “separated” q-function, and the corresponding r is called a
“separated” r-function (thus separated r-functions fulfill (21-22)).

We could consider a weaker condition than “commutation factors on G”
or “separatedness”. We call a q-function a 2-cocycle if

qb,c q
−1
a+b,c qa,b+c q

−1
a,b = 1. (23)

This name will become clear soon. Clearly, every “commutation factor on
G” or separated q-function is a 2-cocycle. The identity (17) for 2-cocycles
becomes:

1 = ra,b,c rc,b,a, (24)

1 = (qa,c qb,c q
−1
a+b,c) (ra,b,c rc,a,b rb,c,a). (25)

We call Z2 = Z/2Z and ZN = Z/NZ. Scheunert [3] shows that a general
“commutation factor on G” over real or complex numbers can be generated
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by factors of the form

q2(a, b) = (−1)ab
, for a, b ∈ {0, 1} = Z2 (Super − grading), (26)

q
N⊕N

((n,m), (n′
,m

′)) = exp

{
2πi

N
(nm

′ − n
′
m)

}
, (27)

for N ≥ 2, (n,m), (n′
,m

′) ∈ ZN ⊕ ZN ,

and replications of them using diverse ZN–factors of the decomposition of
the finite abelian G into

G = ZN1

⊕
· · ·

⊕
ZNs . (28)

For further properties of q-functions in regards to flexibility, Jordan ad-
missibility, weak alternativity, right/left alternativity, alternative, Moufang
associativity see [5].

We consider finally a constraint from monomial of generators of order
four

(va · vb) · (vc · vd) = ra+b,c,d ((va · vb) · vc) · vd, (29)

(va · vb) · (vc · vd) = (ra,b,c+d)
−1

rb,c,d ra,b+c,d ra,b,c ((va · vb) · vc) · vd,(30)

and to avoid zero divisors, we obtain

rb,c,d (ra+b,c,d)
−1

ra,b+c,d (ra,b,c+d)
−1

ra,b,c = 1. (31)

This identity resembles the pentagon identity satisfied by the associator
in a ring or algebra [7], which have more general counterparts on the as-
sociahedra structures satisfied by the associator [8]. The identity (31) is
remarkable since much like (3-4) which involve only q-factors, this involves
only r-factors. We call an r-factor obeying (31) a 3-cocycle. To understand
this we will involve a transformation that converts products into sums, and
adopting a trivial action of the group on the parameters,as follows.

Let f be a generic function

f : G × · · · × G → K
∗
. (32)

We can use an inclusion map L from image(f) into the abelian group G′

generated by image(f), which can be finite and can be written additively,
and it is clearly a subgroup of the abelian multiplicative group K∗,

L : image(f) → G
′ = gen(image(f)) ⊂ K

∗
. (33)

In the case of K∗ = C∗ (the non-zero complex numbers), the additive
notation in G′ can be obtained by using a logarithm mod2πi, by selecting
a cut that avoids any of the logarithms of the elements in image(f). We

can use the map L to convert f into a function f̂ between abelian groups
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(with additive operation), where we can consider cohomological properties
of such maps:

f̂ = L ◦ f : G × · · · × G → G
′
. (34)

In this way we define the functions Ĉ, q̂, and r̂.

The coboundary (or coderivative) of the function q̂ is given by [1][2]:

(δ(2)
q̂)[a, b, c] = a q̂(b, c) − q̂(a + b, c) + q̂(a, b + c) − q̂(a, b). (35)

Now, equation (23) in terms of q̂ becomes

q̂(b, c) − q̂(a + b, c) + q̂(a, b + c) − q̂(a, b) = 0. (36)

Hence, by assuming the trivial action of G on Ĝ (in the term a q̂(b, c) in
(35)), the equation (36) implies that q̂ has vanishing coboundary, and thus
it explains the name of 2-cocylce for q-functions satisfying (23).

The question then arises on whether q
N⊕N

in (27) has a trivial cohomol-

ogy, i.e. if q̂
N⊕N

itself is the coboundary of a cochain φ̂ (leading automat-
ically to its cocycle property and thus belonging to a trivial cohomology
class). We obtain first q̂

N⊕N
concretely:

q
N⊕N

((n,m), (n′
,m

′)) = exp

{
2πi

N
q̂

N⊕N
((n,m), (n′

,m
′))

}
, (37)

q̂
N⊕N

: (ZN ⊕ ZN )2 → ZN ,

q̂
N⊕N

((n,m), (n′
,m

′)) = (nm
′ − n

′
m) mod N. (38)

Let us now assume that q̂
N⊕N

is a 1-coboundary, i.e. there exist a func-
tion:

φ̂ : ZN ⊕ ZN → ZN , (39)

such that

q̂
N⊕N

(a, b) = (δ(1)
φ̂)[a, b] = a φ̂(b)− φ̂(a+b)+ φ̂(a) = φ̂(b)− φ̂(a+b)+ φ̂(a).

(40)
(again, the action of ZN ⊕ ZN on ZN is trivial). Now, from q̂

N⊕N
(a, 0) =

q̂
N⊕N

(0, a) = 0 we verify φ̂(0) = 0. From q̂
N⊕N

(a, a) = 0 we obtain φ̂(2a) =

2φ̂(a). Proceeding in this manner, from q̂
N⊕N

(a, (n − 1)a) = 0 we obtain

φ̂(na) = nφ̂(a). Let φ̂((1, 0)) = k1 and and φ̂((0, 1)) = k2. From

q̂
N⊕N

((n, 0), (0,m)) = nm

= φ̂((0,m)) − φ̂((n,m)) + φ̂((n, 0)) = m k2 − φ̂((n,m)) + n k1,(41)

q̂
N⊕N

((0,m), (n, 0)) = −nm

= φ̂((n, 0)) − φ̂((n,m)) + φ̂((0,m)) = n k1 − φ̂((n,m)) + m k2,(42)
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it follows that 2nm = 0 mod N . This is a contradiction for N > 2 . While
for N = 2, the q̂

2⊕2
is actually the 1-coboundary of:

φ̂
2⊕2

((n,m)) = n k1 − nm + m k2, (43)

where k1, k2 ∈ Z/2Z are arbitrary. This leads to the following proposition
[6][9]:

Proposition 1.

q
N⊕N

: (ZN ⊕ ZN )2 → C∗
,

q
N⊕N

((n,m), (n′
,m

′)) = exp

{
2πi

N
(nm

′ − n
′
m)

}
. (44)

is a 2-cocycle. For N > 2 it has nontrivial cohomology (i.e. it is not a
1-coboundary). For N = 2, q̂

2⊕2
is the 1-coboundary of the function in

equation (43).

The quaternion algebra H is a faithful Z2 ⊕ Z2–graded finite perfect
algebra with unit [5] with:

qH((n,m), (n′
,m

′)) : = exp{πi(nm
′ − n

′
m)}, (45)

rH((n,m), (n′
,m

′), (n′′
,m

′′)) : = 1, (46)

∀(n,m), (n′
,m

′), (n′′
,m

′′) ∈ Z2 ⊕ Z2.

Accordingly, its q-function has trivial cohomology class, and its r-function
has trivial cohomology class as well.

The octonion algebra O is a Z2⊕Z2⊕Z2—graded faithful perfect algebra
with unit [5] with:

qO((n,m, s), (n′
,m

′
, s

′)) :=

= e
πi{(nm′−n′m)+(ns′−n′s)+(ms′−m′s)+n′ms−nm′s′+nm′s−n′ms′+nms′−n′m′s}

(47)

rO((n,m, s), (n′
,m

′
, s

′), (n′′
,m

′′
, s

′′)) :=

= e
−πi{nm′s′′+nm′′s′+n′ms′′+n′m′′s+n′′ms′+n′′m′s}(48)

∀(n,m, s), (n′
,m

′
, s

′), (n′′
,m

′′
, s

′′) ∈ Z2 ⊕ Z2 ⊕ Z2.

By considering the function

φ̂O((n,m, s)) = nm + ns + ms + nms, (49)

we can check that q̂O is the 1-coboundary of φ̂O, and thus it is a 2-cocycle
of trivial cohomology class.

A similar analysis can be done for the binary sedenion algebra [5] and
further sedenion algebras. This will be presented elsewhere [12].
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Let us discuss the cohomology of the r-function of a finite perfect algebra.
Since r satisfies (31), it is a 3-cocycle. Now, the defining equation (4)

establishes that r̂ is the 2-coboundary of Ĉ. Therefore, it has always trivial
cohomology class. We obtain [9]:

Proposition 2. All finite perfect algebras have r-functions with trivial co-
homology class. In fact, the r-function is the 2-coboundary of the structure
constant function C for the chosen basis {va|a ∈ G}.

As a corollary we obtain [9]:

Corollary 1. The quaternion and octonion algebras are faithful finite per-
fect algebras with unit whose q- and r-functions have trivial cohomology
class.

As we observe, these algebras over the reals leading to (normed, alterna-
tive and composition) division algebras turned out to be finite perfect alge-
bras with trivial cohomology in their q- and r-functions. Hence, nontrivial
noncommutative and nonassociative properties can follow from q- and r-
functions with trivial cohomology class. In other words, there are algebras
with nontrivial properties in regard to their lack of commutativity and/or
associativity (such as quaternion and octonion algebras) which have nev-
ertheless trivial cohomology associated with their q- and r-functions. The
cohomological properties are going to be instrumental in the determination
of novel perfect algebras with interesting properties. We are going to see
below that finite perfect algebras with trivial or nontrivial cohomology in
their q- and r-functions have trivial contributions as parameters of graded
Lie algebras in the sense that they are equivalent to Lie (super)algebras.

Let A1 and A2 be graded algebras with bases {va|a ∈ G1} and {ub|b ∈
G2} respectively. We call the direct product algebra A1 × A2 which is
generated by products {va · ub|(a, b) ∈ G1 ⊕ G2} where the generators of
A1 commute with those of A2: va · ub = ub · va,∀(a, b) ∈ G1 ⊕ G2, and the
generators of A1 associate with those of A2: va · (ub ·ud) = (va ·ub) ·ud and
va · (vc · ub) = (va · vc) · ub for all a, c ∈ G1, and b, d ∈ G2.

Let A1 and A2 be graded algebras with bases {va|a ∈ G} and {ub|b ∈ G}
respectively, and graded over the same finite abelian group G. We call
A1 � A2 the merged product algebra which is generated by the products
{va ·ua|a ∈ G}, which generate a subalgebra of the product algebra A1×A2.

Observe that direct and merged products are defined for graded algebras
with a base {va|a ∈ G}. That is, for algebra factors A =

⊕
g∈qG Ag such

that dimK(Ag) = 1.

It is immediate to prove that both the direct product as well as the
merged product algebras with all its factors being finite perfect algebras
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are also finite perfect algebras. Furthermore, the q- and r-functions of the
direct product A1 × A2 with finite perfect algebra factors are given by:

qA1×A2
((a, b), (c, d)) := qA1

(a, c) qA2
(b, d), (50)

rA1×A2
((a, b), (c, d), (f, g)) := rA1

(a, c, f) rA2
(b, d, g). (51)

The q- and r-functions of the merged product A1 � A2 with finite perfect
algebra factors are given by:

qA1�A2
(a, b) := qA1

(a, b) qA2
(a, b), (52)

rA1�A2
(a, b, c) := rA1

(a, b, c) rA2
(a, b, c). (53)

These products will provide enough tools to amalgamate diverse simpler
finite perfect algebras into more entangled ones.

Finally we consider the Grassmann algebras. Let A1 be an associative
Z2-graded algebra generated as a vector space by {1, θ1}, with 1 of degree
0 ∈ Z2 or “even,” and θ1 with degree 1 ∈ Z2 or “odd”, and θ1θ1 = −θ1θ1.
This leads clearly to zero divisors at the level of monomials in generators.
This is equivalent to say that its q-function is given by (26). Observe that
in this case the q-function is not defined by (3) as it is done for finite
perfect algebras since here some structure constants vanish. The structure
constants of the Grassmann algebra with base {v0 = 1, v1 = θ1} are: C0,0 =
1, C0,1 = C1,0 = 1, C1,1 = 0. In this case the q-function is defined with the
choice (26) that respects (5). Analogously, its r-function is not defined by
(4), but we take r = 1, since the algebra is associative, in consonance with
(6). As a vector space over K, the Grassmann algebra satisfies:

A1 = K 1 ⊕ K θ1. (54)

This concept is extended to Grassmann algebras AM with several mu-
tually associative and mutually anti-commutative θiθj = −θjθi algebra
generators {θ1, θ2, · · · , θM}. As a vector space over K, AM has dimension
2M .

We can consider now the direct product or the merged product between
a finite perfect algebra A1 and a Grassmann algebra AM . The algebras
resulting from these type of products and further direct or merged products
with finite perfect algebras are called finite quasi-perfect algebras. If all the
algebras involved in the products to create the finite quasi-perfect algebra
have unit (the Grassmann algebra do have unit 1), then it is called unital
or with unit.

The remarkable feature of finite quasi-perfect algebras is that the corre-
sponding q- and r-functions can be split into factor contributions (analogous
to (50-51) or to (52-53)) in which one factor gives contributions from a finite
perfect algebra and the other factor gives contributions to q-factors alone
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(since the Grassmann algebra is associative) from a (plain) Grassmann al-
gebra.

The generators of a finite quasi-perfect algebra as a vector space over K

can be expressed as a product va · wb, where va is itself a product of gen-
erators of finite perfect algebras, and wb is a basis element of a Grassmann
algebra AM (as vector space over K). This way of splitting each finite
quasi-perfect algebra generator will be of fundamental importance since we
will attempt to compensate all the contributions to the q- and r-factors orig-
inated from the finite perfect algebras leaving only the associative (plain)
Grassmann algebra contributions.

3. Epsilon or color Lie (super)algebras and “discoloration”

Let G be a finite abelian group and q a commutation factor on G. A
G-graded q-Lie algebra L (also called color, Epsilon [3] or (G, q)-graded Lie
algebra [5] ), is a G-graded vector space over K that has a binary operation
[ , ] satisfying:

L =
⊕

a∈G

La, [La, Lb] ⊂ La+b, (55)

[Gia, Gjb] = −q(a, b)[Gjb, Gia], (56)

[Gia, [Gjb, Gkc]] = [[Gia, Gjb], Gkc] + q(a, b)[Gjb, [Gia, Gkc]]. (57)

where Gia, Gjb, Gkc are any elements (for instance generators) in L of
degree a, b, c respectively.

Scheunert [3] shows that there is a bijection between a general G-graded

q-Lie algebra and the ordinary Lie (super)algebra L̂:

L −→ L̂, L̂a = v−a ⊗ La, (58)

Gia 7→ Ĝia := v−a ⊗ Gia, (59)

where the va are the corresponding generators of the finite perfect algebra
that produces all the contributions to q but those of a Grassmann algebra.
Under such a transformation we move the structure constants C of L to
the structure constants Ĉ of L̂:

[Gia, Gjb] = C
k(a+b)
ia,jb Gk(a+b), (60)

[Ĝia, Ĝjb] = [v−a ⊗ Gia, v−b ⊗ Gjb] = Ĉ
k(a+b)
ia,jb Ĝk(a+b), (61)

Ĉ
k(a+b)
ia,jb = C(−b,−a)C

k(a+b)
ia,jb , (62)

where Ca,b are the structure constants associated with the basis {va|a ∈ G}
of the finite perfect algebra.
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This process of moving from a color Lie (super)algebra to an ordinary
Lie (super)algebra is sometimes called “discoloration”. We want to solve
two questions:

1. Can we define a generalized graded Lie algebra whose parameters are
in a finite quasi-perfect algebra, and if so, can we generalize Scheunert’s
theorem so as to find a bijection to an ordinary Lie (super)algebra?

2. Can we provide a basis choice for associative finite perfect algebra with
q-function being a “commutation factor on G”, such that self-adjoint gen-
erators are transformed into self-adjoint operators after the transformation
(58-59)?

4. Graded Lie algebras with noncommutative and nonasso-
ciative parameters

We introduce a generalization of the Epsilon or color Lie (super)algebras
to define algebras whose parameters are in a finite quasi-perfect algebra A,
such that as a vector space over K it can be generated by the products
va ·wb, where va is itself a product of generators of finite perfect algebras,
and wb is a basis element of a Grassmann algebra AM (as vector space over
K). The finite perfect algebra generated by the factors va will be called
A1.

Definition: The triple (G, qA : rA) corresponding to a unital G-graded
quasi-perfect algebra A over K is called a finite quasi-perfect group grading
over K. If A were actually a finite perfect algebra (i.e. when the Grassmann
algebra AM contribution is trivial, AM = A0 = K) then the triple is called
a finite perfect group grading over K.

Definition: We call L a (G, qA : rA)–graded Lie algebra over K [4][5]
if (G, qA : rA)- is a finite perfect or quasi-perfect group grading over K,
L =

⊕
a∈G La is a G-graded vector space over K such that following fine

axioms are fulfilled.

Axiom 1: The grading group G is generated by the elements a ∈ G

such that La 6= {0}.
Axiom 2: There is a closed binary G-graded product [ , ] in L:

[·, ·] : L × L → L; (Qa, Q
′
b) 7→ [Qa, Q

′
b] ∈ La+b, (63)

[La,Lb] ⊂ La+b. (64)

Axiom 3: The product [ , ] is bilinear with respect to the addi-
tion operation in each vector space component La. That is, for
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all Qa, Q
′
b, Q

′′
b ∈ L; y ∈ K:

[Qa, Q
′
b + yQ

′′
b ] = [Qa, Q

′
b] + y[Qa, Q

′′
b ], (65)

[Q′
b + yQ

′′
b , Qa] = [Q′

b, Qa] + y[Q′′
b , Qa]. (66)

Axiom 4: The product [ , ] is q- antisymmetric, i.e. for all
Qa, Q

′
b ∈ L:

[Qa, Q
′
b] = −qA(a, b)[Q′

b, Qa]. (67)

Axiom 5: The product [ , ] is (q,r)-Jacobi associative, i.e.
∀ Qa, Q

′
b, Q

′′
c ∈ L:

[Qa, [Q
′
b, Q

′′
c ]] = rA(a, b, c)[[Qa, Q

′
b], Q

′′
c ] +

+rA(a, b, c)qA(a, b)(rA(b, a, c))−1[Q′
b, [Qa, Q

′′
c ]]. (68)

This structure will allow among others, the definition of Lie algebras
whose parameters are quaternions or octonions. This clearly depend on a
careful matching between the admissible grades of such algebras and the
ones of the aimed Lie algebraic structure. It is well known that some (ex-
ceptional) Lie algebras have a close relationship with these nonassociative
(finite perfect) algebras.

The connection between plain Lie algebras and (G, qA : rA)–graded Lie
algebras over K is given by the following theorem, which generalizes results
from [6]:

Theorem 1. If L is a (G, qA : rA)–graded Lie algebra over K and A is
a G-graded finite quasi-perfect algebra with basis {wa|a ∈ G} leading to
the group grading (G, qA : rA), then the algebra (A ⊗ L)o generated by the
products {w−a ⊗ Qa|a ∈ G} with the bilinear product:

[w−a ⊗ Qa,w−b ⊗ Q
′
b] =

= rA(−b,−a, a)(rA(−b − a, a, b))−1(w−b ·w−a) ⊗ [Qa, Q
′
b], (69)

constitutes a plain Lie algebra over K.

Proof: In order to prove this we just need to verify that the product [ , ]
defined in (69) is a closed binary operation in (A ⊗ L)o and satisfies anti-
commutativity and the Jacobi-identity. Showing closure under this product
is straightforward. Let {Gia|a ∈ G, i = 1, ..,dimLa} be a generator basis
for L. Hence {w−a ⊗ Gia|a ∈ G, i = 1, . . . ,dimLa} constitutes a vector
space generator basis for (A ⊗ L)o.

Now, from w−b · w−a = qA(−b,−a)w−a ·w−b, [Gia, Gjb] =
= −qA(a, b)[Gjb, Gia], and using an identity obtained by reorganizing the
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product (w−a · wa) · (w−b · wb) = (w−b · wb) · (w−a · wa), namely

rA(−b,−a, a)(rA(−b − a, a, b))−1
qA(−b,−a)qA(a, b)

= rA(−a,−b, b)(rA(−a − b, b, a))−1
. (70)

(One comment is in order. This identity holds since the contribution of the
Grassmann algebra produces matching q-contributions by itself since its q is
“separated”. The further contributions of the unital finite perfect algebras
can not produce zero divisors at the level of monomials, so the product
of their contributed q and r-factors after a reorganization of factors and
parentheses returning to the initial monomial should be 1.) Using these
results we obtain:

[w−a ⊗ Gia,w−b ⊗ Gjb]

= rA(−b,−a, a)(rA(−b − a, a, b))−1(w−b · w−a) ⊗ [Gia, Gjb]

= rA(−b,−a, a)(rA(−b − a, a, b))−1
qA(−b,−a)(w−a ·w−b)

⊗− qA(a, b)[Gjb, Gia]

= −[w−b ⊗ Gjb,w−a ⊗ Gia], (71)

where in the last equality we made use of the identity (70) and definition
(69). Now, the validity of the Jacobi identity

[w−a ⊗ Gia, [w−b ⊗ Gjb,w−c ⊗ Gkc]]

= [[w−a ⊗ Gia,w−b ⊗ Gjb],w−c ⊗ Gkc]

+[w−b ⊗ Gjb, [w−a ⊗ Gia,w−c ⊗ Gkc]], (72)

follows similarly using reiteratively the product in (69) in each product in
(72). Then we require an identity obtained from the monomial equation
(w−a ·wa) · ((w−b ·wb) · (w−c ·wc)) = ((w−a ·wa) · (w−b ·wb)) · (w−c ·wc) =
(w−b ·wb) · ((w−a · wa) · (w−c · wc)), namely:

rA(−c,−b, b)(rA(−b − c, b, c))−1
rA(−b − c,−a, a) (73)

(rA(−a − b − c, a, b + c))−1

= rA(−b,−a, a)(rA(−a − b, a, b))−1
rA(−c,−a − b, a + b) ·

·(rA(−a − b − c, a + b, c))−1
rA(−c,−b,−a)(rA(a, b, c))−1

= rA(−c,−a, a)(rA(−a − c, a, c))−1
rA(−a − c,−b, b) ·

·(rA(−a − b − c, b, a + c))−1(rA(−c,−a,−b))−1
rA(−c,−b,−a) ·

·rA(b, a, c)(rA(a, b, c))−1
qA(−a,−b)qA(b, a). (74)

The first equality in (74) is used to transform the r-factors resulting from
the first term in the right-hand side of equation (72), and the last equal-
ity allows to transform the r- and q-factors resulting in the second term
in the right-hand side of (72). After such transformations we obtain the
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(q,r)-Jacobi associativity equation (68) multiplied in both sides by the
same monomial in the transformation parameters. And this completes the
proof.�

Observe that likewise as in the proof of Scheunert, the Lie algebra (A⊗
L)o inherits the G-grading from the original Lie algebra.

A very interesting byproduct of this exploration is the formulation of the
question: “which are the relations between the q- and r-functions
in a finite perfect algebra that generate all possible relations ob-
tained form arbitrary monomials? We clearly know partial or con-
strained solutions to this questions, when the algebra is commutative, or
associative or separated. But it is not known to the authors if there is a uni-
versal finite basis of identities from which all the others follow. Obviously,
the functions q, and r given by equations (3) and (4) provide a solution to
this question in the case of perfect algebras.

Now, as we are going to see, that the defined (G, qA : rA)–graded Lie
algebra over K follows a similar fate as the color or epsilon (super)algebras.
This generalize once again the result by Scheunert [3], which has already
obtained some generalization in [10] [11], for some novel sorts of noncom-
mutativity, but without involving nonassociativity.

Theorem 2. There is a bijection between a each (G, qA : rA)–graded
Lie algebra over K and a Lie (super)algebra whose parameters are in the
Grassmann algebra contributing to the finite quasi-perfect algebra A. Let
{va|a ∈ G} be a vector space basis of all the finite perfect algebra contribu-
tions to the finite quasi-perfect algebra A. These va’s will generate a finite
perfect algebra A1. This algebra A1 will produce all q- factor contributions
of qA with the exception of those provided by the contributing Grassmann
algebra, and it will produce all the contributions to the rA-factors (since the
Grassmann algebra is associative, it has trivial contributions to rA). The
linear map

B : L → (A1 ⊗ L)o, (75)

Gia 7→ Ĝia := v−a ⊗ Gia. (76)

will provide the desired bijection. The space (A1 ⊗ L)o together with the
bilinear product defined by:

[Ĝia, Ĝjb] = Ĉ
k(a+b)
ia,jb Ĝk(a+b), (77)

Ĉ
k(a+b)
ia,jb = CA1

(−b,−a)C
k(a+b)
ia,jb rA1

(−b,−a, a)(rA1
(−b − a, a, b))−1,(78)

satisfies:
[Ĝia, Ĝjb] = −qAM

(a, b)[Ĝjb, Ĝia]. (79)

[Ĝia, [Ĝjb, Ĝkc]] = [[Ĝia, Ĝjb], Ĝkc] + qAM
(a, b)[Ĝjb, [Ĝia, Ĝkc]],(80)
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where the function qAM
casts only the contribution to the q-factors from the

Grassmann algebra AM factor of the finite quasi-perfect algebra A in the
sense of identities (50-51) and (52-53) for the contributions of the factors
in direct or merged products.

Proof: The verification of (79-80) follow similar steps as the previous
theorem, just that here the q-factors from the finite perfect algebra factor
A1 and those contributed by the Grassmann algebra factor AM in the direct
or merged product algebra are going to be managed separately (since they
arise separately according to identities (50-51) and (52-53)), while all the
r-factors come only from A1 (since AM is associative). Let us verify that

the Ĝia satisfy (79), From the definition (78) we have:

Ĉ
k(a+b)
ia,jb = CA1

(−b,−a)C
k(a+b)
ia,jb rA1

(−b,−a, a)(rA1
(−b − a, a, b))−1

= CA1
(−b,−a) (−qA1

(a, b)qAM
(a, b))C

k(a+b)
jb,ia rA1

(−b,−a, a) (81)

(rA1
(−b − a, a, b))−1 = −qAM

(a, b)Ĉ
k(a+b)
jb,ia ,

where in the last equality we used (78) to express C
k(a+b)
jb,ia in terms of Ĉ

k(a+b)
jb,ia

since all other factors are invertible nonzero q-factors , r-factors or nonzero
structure constants CA1

(−a,−b) factors. Now, using equation (3) we find
for the finite perfect part: CA1

(−b,−a)(CA1
(−a,−b))−1 = qA1

(−b,−a)
which together with identity (70) provides the last line in (82).

The proof of (80) follows similar lines using the Jacobi identity in terms

of the structure constants C
k(a+b)
ia,jb . �

This theorem just states that although the parameters in an (G, qA : rA)–
graded Lie algebra are nonassociative and noncommutative, all but the non-
commutativity coming from a Grassmann algebra AM can be compensated
by a suited change of variables, giving thus no real fundamental contribu-
tion to the Lie algebraic structure. The G-grading structure remains intact
under the change of variables map B. The reason why the contribution of
the Grassmann algebra AM cannot be compensated comes from the fact
that due to the nilpotence of the θi’s some structure constants are zero,
and thus do not lead to a bijection (see (77-78)), and thus the Grassmann
algebra structure constants C cannot be used to compensate their q-factors
contributions. For instance, equation (3) does not hold for Grassmann al-
gebras.

Further directions for study of finite quasi-perfect algebras include look-
ing at how one might generalize the Poincare-Birkhoff-Witt Theorem to
explicitly determine the structure of the enveloping algebra (see [3], Section
4C). A related direction of inquiry would be to determine the status of Ado’s
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theorem in this context (see [3], Section 7); i.e., whether a (G, qA : rA)–
graded Lie algebra over K can always be represented faithfully as a subal-
gebra of endomorphisms of a finite dimensional (G, qA : rA)–graded vector
space. Some matrix representations of such (G, qA : rA)–graded Lie alge-
bras, together with particular graded matrix products were presented in
[6].

5. Transformations maintaining self-adjointness

The only question that blocks the use of the transformations (58-59)
or (75-76) is the question of the preservation of self-adjointness character
under such transformations. We are going to tackle this question in the
case of having associative transformation parameters with “commutation
factor” given by (26-27) and replications of them involving diverse factors
in the decomposition of G in (28). We will investigate if there is a basis
choice of the corresponding finite perfect algebra that allows to have

Ĝia = Ĝia whenever Gia = Gia. (82)

The adjoint operation should remain anti-involutive:

[Ĝia, Ĝjb] = [Ĝjb, Ĝia] = [Ĝjb, Ĝia], (83)

and at the level of scalars in K = C, the involution acts as complex conju-
gation. In order for that to be the case, we need

[Ĝia, Ĝjb] = [Ĝjb, Ĝia] = (Ĉ
k(a+b)
ia,jb )∗Ĝk(a+b). (84)

where (·)∗ denotes complex conjugation. We need thus

(Ĉ
k(a+b)
ia,jb )∗ = (C−b,−a)

∗ (C
k(a+b)
ia,jb )∗ = C−a,−b C

k(a+b)
jb,ia . (85)

Now, since the original adjointion was also anti-involutive, we just need to
have

(C−b,−a)
∗ = C−a,−b. (86)

Accordingly, the array Ca,b used by the transformation (58-59) needs to
be hermitian, in order to transform self-adjoint generators into self-adjoint
ones.

Since the transformation (78) in this case targets to eliminate the q-
factors of the form (27) associated with finite perfect algebras, the question
is thus: Is there a basis for the finite perfect algebra with q-factors as in
(27) that has hermitian structure constants? We can put the question in
a different manner. Let us assume that the basis {va|a ∈ G} of the finite
perfect algebra is real, i.e. va = va, ∀a ∈ G. Then,

va · vb = vb · va = (Ca,b)
∗
va+b. (87)
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¿From the reality of the basis it follows (Ca,b)
∗ = Cb,a, which is just equation

(86). We see that if we have a self-adjoint basis

va = va, ∀a ∈ ZN ⊕ ZN , (88)

then (82-83) are fulfilled. The question can be then rephrased: Can we
define a self-adjoint basis for an finite perfect algebra with q-factor given
by (27)?

Let ε(1,0) = ε(1,0), and ε(0,1) = ε(0,1) the self-adjoint basis to generate the
algebra A1. We define

ε(n,m) = exp

{
πi

N
g(n,m)

}
(ε(1,0))

n (ε(0,1))
m

. (89)

Let us find the choice of g(n,m) that makes all the ε(n,m) self-adjoint:

ε(n,m) = exp

{
πi

N
g(n,m)

}
(ε(1,0))n (ε(0,1))m =

= exp

{
−

πi

N
g(n,m)

}
(ε(0,1))

m (ε(1,0))
n =

= exp

{
−

πi

N
g(n,m)

}
exp

{
−

2πi

N
mn

}
(ε(1,0))

n (ε(0,1))
m

. (90)

where we used the q-factor in (27) to exchange the monomials. In order to
have self-adjoitness we require g(n,m) = −nm. From this, we can find:

ε(n,m) ε(n′,m′) = exp

{
πi

N
(nm

′ − mn
′)

}
ε(n+n′,m+m′). (91)

We clearly see that their structure constants are hermitean, and the algebra
A1 has a self-adjoint basis. Accordingly we can complement Scheunert’s
theorem by adding the following result following from the construction
above:

Proposition 3. Let q be a “commutation factor on G”. The bijection (58-
59) between a (color, epsilon or) G-graded q-Lie algebra and an ordinary
Lie (super)algebra can be chosen so that the map maintains self-adjointness
in the mapped algebra elements.
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matica Academiae Paedagogiace Nýıregyháziensis, Vol. 24, No. 3, pp. 271-277
(2008).

[10] H. Pop, A generalization of Scheunert’s theorem on cocycle twisting of the Lie
color algebras, preprint q-alg 9703002 (1997).

[11] Y. Bahturin and S. Montgomery, Pi-envelopes of the Lie superalgebras, Proceed-
ings of the AMS, Vol. 127, No. 10, 2829-2839 (1999).

[12] L.A. Wills–Toro, et al. In preparation.

São Paulo J.Math.Sci. 3, 2 (2009), 265–282


