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Abstract
This work develops a systematic methodology able to identify the desired work points, themetamodels were evaluated varying
air–fuel ratio, ignition timing, compression ratio, and combustion duration using design of computer experiments and RSM.
It provide the possibility to determine optimal control parameters, according to selected objectives and operating constraints.
This methodology is able to automatically identify the optimal engine calibration with less computational effort. Only in this
way, the reliability of an integrated metamodel/optimizer approach can be included in a general-purpose that is to identify
the engine calibration that minimizes motor vehicle emissions according to European emission standards (European Union
in Off J Eur Union 50, 2007). As long as it improves mean effective pressure and reduces exergy destruction due to heat
transfer and combustion process. Since, in internal combustion engines, more than 30–40% of fuel energy wastes through
the exhaust and just 12–25% of the fuel energy converts to useful work. So, researchers are motivated to recover the heat
from the waste sources in engines using the ways which not only reduce the demand of fossil fuels, but also reduce the
harmful greenhouse gases and help to energy saving (Hatami et al. in Neural Comput Appl 25(7–8):2079–2090, 2014). The
advantages of this contribution include the ability to study a wide range of parametric space and to independently evaluate
physical and chemical processes, and detailed in-cylinder information, which is normally not available or is inaccessible in
experiments. The uncertainty of the information in this unexplored design region can be quantified. Finally, the problem of
optimizing involves three optimization fronts, energetic, economic and ecological (Chica and Torres in Int J Interact Des
Manuf 12(1):355–392, 2018).

Keywords Central composite design (CCD) · Response surface methodology (RSM) · Spark-ignition engine · Exhaust
emissions · Engine performance

1 Introduction

Despite being the dominant power source for road vehicles,
internal combustion engines are one of the major contribu-
tors to air pollution in the world. Besides, numerous official
cautionary statements on insufficient fossil fuels and global
warming have been issued [4].Hence, attention on improving
engine efficiency, reducing exhaust emissions and meeting
the customers expectations has increased.
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Overall control of internal combustion engines is currently
premised on the reading of various engine operating param-
eters such as engine speed, coolant temperature, exhaust
oxygen concentration, throttle position and intake manifold
pressure. All those engine functions are managed by an
electronic control unit (ECU). ECU, which is an integrated
computing device, is commonly used on engines to provide
control signals to the actuators based on the feedback signals
measured by the sensors. It mainly contains sets of look-
up tables that store the control parameters for each actuator
over the operating range of the engine, in which each cell
represents an engine operating point [5]. Traditionally, the
control parameters of the actuators are obtained through huge
amount of trial-and-error experiments. However, using tradi-
tional approach to calibrate these parameters becomes more
challenging with the increasing incorporation of new tech-
nologies into advanced engines [5].
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Practically, by analyzing the signals acquired from the sen-
sors, engineers are able to calibrate the actuator parameters
stored in the ECU so as to optimize the engine performance
(e.g., minimizing the amount of undesirable engine emis-
sions and maximizing engine performance). However, due
to the large number of sensors and actuators, calibration of
a modern engine is time-consuming and expensive, creating
a highly challenging environment for engineers [6]. A huge
amount of resources, in terms of labor, fuel and time, are
required before an optimal parameter setting can be deter-
mined [7].

Optimization is of particular importance in control law
process design. Optimization algorithms include an opti-
mization loop that tunes the controller parameters (e.g.,
gains, time constants) so as to minimize the cost functions
to ensure that control laws meet the desired system require-
ments and specifications. Accordingly, a good potential for
emission reduction is dependent on a well optimized set of
calibration maps, tables and constants, contained in the ECU
[7,8]. The time to evaluate an optimum data design strongly
depends on the number of these calibration parameters. With
an increasing number of such parameters, there is a need
for sophisticated test systems which automatically initiate

parameter variations, perform necessary measurements and
search for an optimized engine calibration [9,10]. In the light
of these considerations, a new and improved engine calibra-
tion method is required [4,11].

Another area of research in engine design is modelling.
Modelling is performed for different reasons. One example
is the design and optimisation of a controller system. Design-
ing a controller by using the real engine in the design process
is an expensive and time consuming task [8]. Thus many
researchers first build a model of the engine and then design,
test and optimise their controller on this model. One other
application of the models is for prediction, where the model
of the engine is built and used to predict different behaviours
of the engine in different environments. Optimising differ-
ent parts of an engine is yet another use of models. Thus,
the automotive industry has turned to model-based calibra-
tion for a solution. Model-based calibration is a method that
uses modern design of experiments (DoE), statistical model-
ing and optimization techniques to efficiently produce high
quality calibrations for engines [12]. In addition, coupling
the model to an optimizer, a more systematic and accurate
exploration of each control parameter can be carried out, thus
allowing to identify more precisely the optimal calibration.

Table 1 Metamodels to predict the performance and exhaust emission parameters of a spark ignition engine

Output
variable

Model Multiple
R-squared (R2)

Y6 ̂Y6 ∼ 367.036−1.074X1−17.61X2+4.43X3+72.817X4−1.307X2X3−5.685X2X4−0.608X2
4 0.99994

Y5 ̂Y5 ∼ 3695228.782 − 20223.82X1 − 138680.42X2 + 84206.95X3 + 324371.757X4 −
6884.132X1X4 − 43325.87X2X4 − 16438.85X2X3 + 10420.72X3X4 + 6880.395X2

2 −
22401.019X2

4

0.9998

Y7 ̂Y7 ∼ 332.514 − 1.541X1 + 6.859X2 − 0.065X3 + 4.039X4 + 0.265X2X3 + 0.449X2X4 +
0.539X3X4 + 0.143X2

1 − 0.823X2
2 + 1.421X2

4

0.99969

Y4 ̂Y4 ∼ 1536.279 + 246.351X1 − 66.510X2 + 207.922X3 − 431.817X4 − 11.98X1X2 +
32.027X1X3 − 65.454X1X4 − 15.786X2X4 − 57.676X3X4 + 36.044X2

2 + 98.996X2
4

0.99601

Y1 ̂Y1 ∼ 4158.788 − 146.037X1 − 860.989X2 + 458.138X3 − 758.495X4 − 99.303X1X2 +
87.512X1X4 − 166.21X2X3 + 361.318X2X4 − 75.487X3X4 − 67.297X2

4

0.98617

Y2 ̂Y2 ∼ 3.376+0.396X1 +0.461X2 +0.339X3 −2.017X4 −0.448X1X2 −0.527X1X4 +1.06X2
4 0.90853

Y3
√

̂Y3 ∼ 60.552 + 7.725X1 + 1.166X2 + 4.646X3 − 11.635X4 + 0.518X1X3 − 1.053X1X4 −
1.399X2X4 − 0.891X3X4 + 1.147X2

2 + 2.493X2
4

0.99397

X1: Air–fuel ratio

X2: Ignition timing (◦CAD)
X3: Compression ratio

X4: Combustion duration (◦)
Y1: Carbon dioxide emissions (mg/m3)

Y2: Carbon monoxide emissions (mg/m3)

Y3: Hydrocarbons emissions (mg/m3)

Y4: Oxides of nitrogen emissions (mg/m3)

Y5: Mean effective pressure (Pa)

Y6: Exergy destruction due to heat transfer/ (J)

Y7: Exergy destruction due to combustion Process/ (J)
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Fig. 1 Contour plots for central composite of CO2 emissions (Y1)

Response surface methodology (RSM) is most effective
and economical solutions for the modeling and analysis of
problems in which a output response of interest is influenced
by single and combined factors and the objective is to opti-
mize this output response. RSM is a set of mathematical
and statistical techniques seeking to optimize an objective
function (or output response) that is affected by multiple fac-
tors using DoE methods and statistical analysis. Instead of
seeking the optimal solution within a large number of ran-
domly generated candidates, RSM utilizes fewer tests to gain
a thorough understanding of the system as well as optimizes
the effects of various factors and the interaction between the
variables to achieve best system performance.

Moreover, RSM has been shown to be an effective and
powerful tool for optimizing engine operating parameters
[13–20].Onawumi et al. [21] usedRSMas optimization tech-
nique to predict the performance and exhaust gas emissions
of 4-stroke spark ignition engine. The results obtained from
HC, CO and NOX emission models showed that the engine
speed (rpm), loading condition (%) and time (seconds) were
found to have significant influence on the emission. The HC,

COandNOX emissionmodels proved positive response from
the regression analysis of actual and predicted responses.
Thus, the response surface methodology provides useful
information required for the experiment and also useful
in predicting the response of engine parameters to engine
emissions. Lee et al. [22] demonstrates the emission reduc-
tion capability of exhaust gas recirculation (EGR) and other
parameters on a high-speed direct-injection (HSDI) diesel
engine equipped with a common rail injection system using
an RSM optimization method. The variables used in the
optimization process included injection pressure, boost pres-
sure, injection timing, and EGR rate. RSM optimization led
engine operating parameters to reach a low-temperature and
premixed combustion regime called the modulated kinet-
ics (MK) combustion region, and resulted in simultaneous
reductions in NOX and particulate emissions without sac-
rificing fuel efficiency. RSM and central composite design
(CCD) were used to systematically investigate the effects
over hydrogen-fuelled internal combustion engines [23].
Three types of inert gases were injected in the intake mani-
fold to vary the gas properties compared to air. Furthermore,
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Fig. 2 Contour plots for central composite CO emissions (Y2)

the type and quantity of the gas, the compression ratio and
throttle position were varied. Similarly, the use of a response
surface approach based onRadialBasis Functions to simulate
a flexible fuel engine running with distinct blends of iso-
octane, n-heptane, toluene and ethanol was presented in [24].
Performance, energetic efficiency and pollutant emissions
are predicted in different operating conditions. In [20] was
studied the use of RSM to optimize the performance param-
eters and exhaust emissions of a SI engine which operates
with ethanol-gasoline blends. Operating parameters, engine
speed and the added volume of bio-ethanol to gasoline fuel
were considered as effective factors on the engine perfor-
mance parameters (Power, Torque and Brake-specific fuel
consumption BSFC) and exhaust emissions (CO, CO2, HC
and NOX ) as responses.

In order to develop a systematicmethodology able to iden-
tify the desired work points, the metamodels [Zutta et al.
Development of simulation metamodels to predict the per-
formance and exhaust emissionparameters of a spark ignition
engine] were evaluated varying air–fuel ratio (AFR), ignition
timing, compression ratio, and combustion duration using

design of computer experiments (DoCE) and RSM. It pro-
vide the possibility to determine optimal control parameters,
according to selected objectives and operating constraints.
This methodology is able to automatically identify the opti-
mal engine calibrationwith less computational effort. Only in
this way, the reliability of an integratedmetamodel/optimizer
approach can be included in a general purpose that is to
identify the engine calibration that minimizes motor vehi-
cle emissions according to European emission standards [1].
As long as it improves mean effective pressure (MEP) and
reduces exergy destruction due to heat transfer and combus-
tion process. Since, in internal combustion engines (ICEs),
more than 30–40%of fuel energywastes through the exhaust
and just 12–25 % of the fuel energy converts to useful work.
So, researchers are motivated to recover the heat from the
waste sources in engines using the ways which not only
reduce the demand of fossil fuels, but also reduce the harmful
greenhouse gases (GHG) and help to energy saving [2]. The
advantages of this contribution include the ability to study a
wide range of parametric space and to independently evalu-
ate physical and chemical processes, and detailed in-cylinder
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Fig. 3 Contour plots for central composite of HC emissions (Y3)

information, which is normally not available or is inacces-
sible in experiments. The uncertainty of the information in
this unexplored design region can be quantified. Finally, the
problem of optimizing involves three optimization fronts,
energetic, economic and ecological [3].

2 Methodology

2.1 Metamodels

Metamodel-based design optimization is attractive when
function evaluations are computationally expensive simula-
tions or have significant numerical noise [25]. But, meta-
models requires a full model evaluation on the entire data
set to compute gradient and Hessian. Therefore, the meta-
models used were the result of a previous work and can
be observed in Table 1. Zutta et al. developed a metamodel
by performance parameter, which are carbon dioxide (CO2)
(Y1), carbon monoxide (CO) (Y2), hydrocarbon (HC) (Y3)
and oxides of nitrogen (NO) (Y4) emissions, mean effec-
tive pressure (MEP) (Y5) and exergy destruction due to heat

transfer (Y6) and combustion process (Y7). Each metamodel
was characterized by a set of factors allowing an accurate
reproduction of performance parameters in the whole-engine
map. Each metamodel was evaluated varying air–fuel ratio
(AFR) (X1), ignition timing (X2), compression ratio (X3),
and combustion duration (X4). In addition, each iteration of
the regression technique is muchmore faster since it operates
on polynomial approximations rather than on the full model
[26]. For more information about the process of obtaining
the metamodels, see [Zutta et al].

For this study three optimization criteria were proposed,
the first one is to maximize the mean effective pressure (Y5)
according to Eq. 1. The second one is to minimize exergy
destruction due to heat transfer (Y6) according to Eq. 2.
And the third one is to minimize exergy destruction due
to combustion process (Y7) according to Eq. 3. The result-
ing objective functions are polynomial, with constraints, and
very fast convergence can be achieved by classical optimiza-
tion techniques.

Control law design process generally begins with a
multiple of requirements which are often referred to as spec-
ifications or constraints. Accordingly, all these objectives
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Fig. 4 Contour plots for central composite of NOx emissions (Y4)

must respect the gas emissions according to European Emis-
sion Standard EURO V [1]. Although currently there are no
standards for limits on CO2 emissions from vehicles, due
to the prominence of CO2 emissions in the production of
greenhouse gases, it was limited to a maximum of Y1 ≤
2000 (mg/m3). It reflects the application of the metamodel to
future regulations, in which exhaust emissions will be more
strictly limited.

max Y5(X)

wi th respect to x = (X1, X2, X3, X4)

subject to Y1, Y2, Y3, Y4 ≤ European emission standards

bounds on X1, X2, X3 and X4

(1)
min Y6(X)

wi th respect to x = (X1, X2, X3, X4)

subject to Y1, Y2, Y3, Y4 ≤ European emission standards

bounds on X1, X2, X3 and X4

(2)

min Y7(X)

wi th respect to x = (X1, X2, X3, X4)

subject to Y1, Y2, Y3, Y4 ≤ European emission standards

bounds on X1, X2, X3 and X4

(3)

2.1.1 Response surface method (RSM)

RSMas amultivariate statisticalmethod simultaneously opti-
mizes an objective function (or response) that is affected by
multiple factors and interactions using design of experiments
(DoE) methods and statistical analysis [27]. Instead of seek-
ing the optimal solution within a large number of randomly
generated candidates, RSM utilizes reduced and simplified
experimental designs to gain a thorough understanding of the
system as well as obtain the optimal combinations of oper-
ating parameters.

Generally, graphical analysis and simulation methods are
used in modeling for design, analysis, and synthesis. The
visual representation allows for a convenient interpretation
of model factors and structure and provides a quick intu-
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Fig. 5 Contour plots for central composite of MEP (Y5)

itive notion of system behavior. Thus, contour plots of the
response surface to explore the effect of changing factor lev-
els on the response were used. The direction for changing
the inputs through the gradient was selected. This gradient
was used in the mathematical (not statistical) technique of
steepest descent or steepest ascent. Finally, RSM took the
derivatives of the locally fitted second-order polynomial to
estimate the optimum input combination.

Rsmpackage ofRwas used to generate response-surfaces.
In addition, it was used to analysis of the resulting data, dis-
play an ensemble of contour plots of the fitted surface, and
do follow-up analyses.

3 Results and discussion

3.1 Optimization

In order to find the most desirable nominal setting for the
controllable independent parameters, second order function
response surfaces were evaluated using standard optimiza-

tion methodology to determine the maximum combustion
desirability.

RSMpackage ofR generatedmaps for all the performance
parameters based on test factors X1, X2, X3, X4 using the
models in Table 1. Particularly, Figs. 1, 2, 3, 4 show the CO2,
CO, HC and NOx optimized maps for the first objective.
Consequently, the responses surfaces represented in Figs. 5, 6
and 7were obtained, which describemean effective pressure,
exergy destruction due to heat transfer and exergy destruction
due to combustion process respectively.

In Table 2 the combination of factors that simultaneously
satisfy the requirements placed on each of the performance
parameters, factors and optimization criterion can be found
using GAMS. After the optimized maps are obtained, some
verification tests need be performed to check the optimiza-
tion results. Therefore, in Table 3 the results for performance
parameters of both the original model and themetamodel can
be compared.
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Fig. 6 Contour plots for central composite of destruction exergy due to heat transfer (Y6)
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Fig. 7 Contour plots for central composite of destruction exergy due to combustion process (Y7)
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Table 2 Optimization results Optimization criterion X1 X2 X3 X4

Maximizing MEP 12 −22.94 8.174 68.52

Minimizing exergy destruction due to heat transfer 12.468 −25 7 64.06

Minimizing exergy destruction due to combustion process 12 −18.525 7 65.48

Table 3 Performance parameters

Performance parameters Maximizing mean effec-
tive pressure

Minimizing exergy destruc-
tion due to heat transfer

Minimizing exergy destruction due
to combustion process

Y1Model 1975.5 2040.7 1975.2

Y1Metamodel 1999.42 1999.42 1999.42

Y2Model 2.04 1.76 0.0824

Y2Metamodel 1.917 1.917 0.106

Y3Model 39.544 29.889 34.1467

Y3Metamodel 39.538 33.137 39.735

Y4Model 996.31 758.98 968.5

Y4Metamodel 1000.1254 770.944 1000

Y5Model 4.5935e6 4.1466e6 4.3352e6

Y5Metamodel 4.5428e6 4.130e6 4.3207e6

Y6Model 544.4624 492.3954 510.3627

Y6Metamodel 541.219 488.374 507.148

Y7Model 333.4607 339.0201 324.6995

Y7Metamodel 333.809 338.932 325.412

4 Conclusions and future work

The aim of this study is to determine the final distribution on
controllable independent parameters, when design is opti-
mized and constraints are met. From the outcome of this
research, the following conclusions are drawn:

• The best condition of engine factors to maximize MEP
were 12 as air–fuel ratio (AFR), −22.94 ◦CAD as
ignition timing, 8.174 as compression ratio, and 68.52
◦as combustion duration. In additional the optimal val-
ues were 1999.42 (mg/m3), 1.917 (mg/m3), 1563.25
(mg/m3),
1000.1254 (mg/m3) for CO2, CO, HC and NOx emis-
sions respectively. MEP reached was 4.5428e6 Pa.

• The optimum factors to minimize exergy destruction due
to heat transfer were 12.468 as air–fuel ratio (AFR), -
25 ◦CAD as ignition timing, 7 as compression ratio, and
64.06 ◦as combustion duration. In additional the optimal
values were 1999.42 (mg/m3), 1.917 (mg/m3), 1098.06
(mg/m3), 770.944 (mg/m3) for CO2, CO, HC and NOx

emissions respectively. Exergy destruction due to heat
transfer reached was 488.374 J.

• The best condition of engine factors to minimize exergy
destruction due to combustion process were 12 as air–

fuel ratio (AFR),−18.525 ◦CAD as ignition timing, 7 as
compression ratio, and 65.48 ◦as combustion duration.
In additional the optimal values were 1999.42 (mg/m3),
0.106 (mg/m3), 1578.87 (mg/m3), 1000 (mg/m3) for
CO2, CO, HC and NOx emissions respectively. Exergy
destruction due to combustion process reached was
325.412 J.

• The complex interaction of engine variables (varying
air–fuel ratio (AFR) (X1), ignition timing (X2), compres-
sion ratio (X3), and combustion duration (X4)) and their
different effect on emissions and performance make it
impossible to intuitively determine the direction, no less
themagnitude, of changes required in all control variables
simultaneously to achieve a given change in constraint
level. It is because of these complex interactions that
an metamodel-based design optimization framework is
required.

• Response surface methodology was found to be efficient
optimization technique, which provides higher flexibility
and can forecast the results in-depth.By that, the available
information for each generated concept is enhanced, so
the human designers can make a more informed decision
as to which concepts to pursue in detail design. This aims
to reduce costs and iterations due to errors in later phases
that are, thus, intercepted during conceptual design. Fur-
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thermore, expert and novice automotive engineers may
use this methodology as an assistant when calibrating an
prototype.

• Metamodels canhelp designers explore newdirections by
providing a wider variety of possibilities thereby expand-
ing the range of solutions that are normally considered
and might be translated into guidance for new engine
technology development.

• Optimization was done among the four-stroke spark
ignition engine test conditions with no restrictions on
ability to implement the results. This selects the optimum
solution independent of control system limitations. How-
ever, the role of the engine control system is to manage
engine functions so as to achieve as much as possible of
this inherent potential performance. Of course even the
best possible control system will not result in exhaust
emissions-fuel performance which exceeds these fun-
damental limits. If complete calibration flexibility were
possible, this capability could be achieved.

• It is expected that this approach will provide guidance in
the development of more efficient and systematic engine
calibratiion techniques. However, it is recognized that by
virtue of certain approximations and limitations in the
current applications of these methods that the resulting
calibrations may have to be adapted and extended for
other optimization tasks with special demands. Nonethe-
less, the results may be used as upper bounds to the
performance expected and thereby be useful in evaluating
hardware configurations relative to required performance
levels or other legislative limits.

• The proposed methodology proved to be a valuable tool
to realize a virtual engine calibration. If applied in an
industrial environment, and utilizingmore advanced opti-
mization strategies, it will hence contribute to drastically
reduce time and costs related to experimental activities
at the test bench.

• Futurework is related to design analysis for the definition
of both engine optimal control maps and control system
strategies.
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