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Abstract The development, testing and tuning of control
systems for complex plants found hardware in the loop (HIL)
technical, a perfect ally to reduce risks, costs and times
redesign. HIL allows for example, in the automotive field
contain an embedded system complexity nonlinear dynam-
ics modeling the internal combustion engine, including the
processes of discrete events and continuous. With the goal to
represent as closely as possible the behavior of the engine,
dynamics is simulated by the embedded system in real time,
sensors including. On the other hand, the electronic control
unit (ECU), by construction also constitutes an embedded
system that the plant operates properly. Is of wide inter-
est to optimize engine operation, and a valid opportunity,
is to design ECU’s that are running optimal control algo-
rithms, such as nonlineal model predictive control (NMPC).
This document is a report of the practical reliability of the
implementation of a HIL simulation scheme for the design
of NMPC controllers for internal combustion engine. In a
RT hardware element implements the component models the
nonlinear plant, in another such element is implemented and
tested two NMPC optimal control algorithms: model pre-
dictive control with linearization on-line and NMPC based
on sequential quadratic programming, included in the sim-
ulation loop the real actuator elements. Combined with an
interface to the designer that allows actively interact with the
system, evaluating an expanded field operating conditions
and even bordering operating limits.
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1 Preface

Since environmental regulations given in the United States
by the Environmental Protection Agency [1], especially at
the end of the 70s, combustion engines have an associated
electronic system that controls its operation, especially talk-
ing about the amount of fuel injected and ignition timing of
the air/fuel mixture, seeking to reduce the toxic emissions,
fuel consumption and get the best energy performance. To
this one element is called electronic control unit (ECU) [2–
4]. Efforts to improve the techniques that these devices to
use are still working today, because environmental and eco-
nomic requirements become more stringent. One possibil-
ity, which arises with the development of increased ability
of the programmable electronic computing, allows develop-
ing complex optimization algorithms and exploits the inher-
ent non-linearity, has the mathematical representation of the
motor. In the current paper, the implementation of a simula-
tion scheme hardware in the loop (HIL) using hardware for
both the model plant and the control system is reported. A
real-time processor working in parallel with an FPGA imple-
ments the nonlinear model of combustion engine, and a simi-
lar element implements a nonlinear model predictive control
(MPC) controller, hence the term 2-HIL. Together with an
interface operation and design, the end result is a contribu-
tion in the design stage to the development cycle engineer-
ing, specifically in combustion engines. Through the operator
interface designer interacts with the system 2-HIL for adjust-
ing optimal controllers, limit performance testing, experi-
ment with changes in modeling parameters and optimization
goals. This will incur the risk and costs of experience in the
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Fig. 1 System architecture sbRIO 9632
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real machine, given the virtual prototype built on embedded
real-time systems. The HIL tools, the FPGA, the real-time
processors have allowed to create systems of experimenta-
tion and interactive design, within the area of mechatronics
such that the design stage incubates the implementation itself.
Products designed, ECUs for the case, can be achieved with
ease of installation of a device “plug and play”, connected to
the engine and start it.

2 Materials and methods

2.1 System architecture

Figure 1 depicts the scheme implemented. The block named
sbRIO 9632, is a real-time processor 400 Mhz with VxWorks
operating system, 2 Mb FPGA logic gates and 128 Mb of
direct access (DMA). A nonlinear model of the combustion
engine involving the pressure and temperature in the intake
manifold, the revolutions in the crankshaft and the normal-
ized stoichiometric combustion ratio, are components imple-
mented in this block. The solver state equations of the model
are implemented in the processor, whereas others elements
such as sensor models, scaling and updating analog outputs
are designed with gates FPGA. The model inputs are sig-
nals from the actuators involved in the hardware loop: throt-
tle position opening measurement or throttle position sensor

(TPS), measured flow of fuel injected through the injectors
Finy, and the instant of ignition spark from the coil-spark plug
assembly.

The cRIO 9075 block, with slightly higher performance
that block described above, is used to implement the non-
linear MPC controller. The data lines from the block sbRIO
to block cRIO, are physical connections of voltage signals,
that cRIO expects in the usual ranges of the sensors used in
automotive technology. So that the block sbRIO taking into
account these requirements to normalize properly model sig-
nals, and so maintain compatibility with the connectivity of
the real plant.

The MPC generates optimal control actions solving an
optimization problem for the current operating point, based
on a model replica also programmed the RT processor and
information available of the current state obtained by the
analog inputs through the correct scaling of the FPGA. The
FPGA of this block also implements event handling discrete
motor, i.e. synchronization signal from crankshaft position
(CKP) the fuel injection time and ignition of the mixture.
Same time implements a control loop the throttle opening,
according to the reference commanded by the optimal con-
troller. The power drivers are embedded in cRIO outputs for
actuation of the injectors, ignition coil and motor butterfly
valve. A flow sensor disposed in the injector rail reports the
injected flow to model inputs, proper conditioning installed
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Fig. 2 Simplified schematic of the machine

in the spark plug electrode reports the ignition timing and
with the TPS the opening angle.

There is provided an interface operation and supervision
on a Windows based computer, to provide a means of modi-
fying model parameters and weight matrices control system,
and visualization of the variables of interest.

2.2 Model implemented

The model used in this report is coined as mean value engine
model (MVEM) by Hendricks and Sorenson [5]. The model
represents the average value of the variable rather than its
instantaneous value at each machine cycle. We distinguish
three main dynamics in MVEM (see Fig. 2 for clarity): filling
dynamics air intake manifold, fuel dynamics on the walls of
the valve intake and crankshaft speed dynamic.

In the sketch of a machine distinguished combustion inter-
nal: (1) butterfly valve, (2) intake manifold, (3) injector, (4)
combustion chamber, (5) cylinder, (6) rod-crank, (7) spark
plug, (8) valves intake and exhaust valves, (9) the catalytic
converter, (10) exhaust and (11) output shaft. The first-
mentioned dynamic occurs in areas 1 and 2, fuel dynam-
ics involves the elements 3 and 8, and crankshaft dynam-
ics including combustion itself with the elements 7, 4, 5, 6,
and 11.

It is considered that a major dynamics involved in MVEM
[5] is which occurred at the intake manifold, which is
described by expression 1.

d
Pm(t)

dt

(
Vm
RTm

)
= ṁα (t) − ṁβ(t) (1)

The intake manifold dynamics is described from the appli-
cation of the isentropic equation of air and the ideal gas
law in the throat of the butterfly. A development of this can
be extended in [6]. Pm , refers to the instantaneous pressure
in the manifold and forms the first reservoir or state vari-
able included in the model. Vm and Tm , refer respectively
to the volume and temperature in the manifold. The vol-

ume is a constructive feature dependent on engine capacity,
and although the temperature is considered constant also,
has used an approximate model for this report. R, refers to
the gas constant. The interaction between the mass inflow
ṁα(t) by the butterfly valve and flow ṁβ(t) entering the
cylinder (zones 1 and 3 of Fig. 2), generates a reservoir for Pm
(zone 2).

The opening angle of the butterfly is an input to the system
and becomes important in its effect within the model. Such
angle, together with atmospheric and manifold pressures then
determine the flow ṁα(t) through the throat of the throttle,
here comes the equation of isentropic expansion of air, given
in expression 2.

ṁα (t) =

⎧⎪⎪⎨
⎪⎪⎩

A(α) Patm√
RTamb

1√
2

si Pm (t)
Patm

< 0.5

A(α) Patm√
RTamb

√
2 Pm (t)

Patm

[
1 − Pm (t)

Patm

] (2)

A(α), represents the effective throat area of the butterfly,
which is a function of the opening angle α, determined
from the body constructively butterfly, although experimen-
tally extraction of a polynomial relationship is often easier
and more accurate. In the model implemented, development
found in [5] was used in the form of 3.

A(α) = 1 − cos(α) − α2
o

2! (3)

αo, is the minimum angle constant used for idling and
involves an aggregate by summing ṁαo(t) in 2. Patm and
Tamb, correspond to the atmospheric pressure and the ambi-
ent air temperature.

Air dynamics that enters the cylinder ṁβ(t), can be mod-
eled as a positive displacement pump, where the intake air is
dependent on the angular speed and manifold pressure (see
Eq. 4).

ṁβ(t) = Vd
4πRTm

ηv (ω(t), Pm(t)) ω(t) (4)

ηv, is the volumetric efficiency of the engine and is found
experimentally. The expressions used to model it, usually are
polynomial forms, functions of speed and manifold pressure.
For the implemented model, has been used the expression 5
taken from model Hendricks:

ηv = si (ω(t))Pm + yi (ω(t)) (5)

si and yi , are explicitly experimental features depending on
the angular velocity whose preparation is in [5].

To search for a better model accuracy, expression 1 is
modified modeling the dynamics of the manifold temperature
using the law of conservation of energy, Eq. 6.
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dTm
dt

= RTm
PmVm

[
mα(κTamb − Tm) − mβ(κ − 1)Tm

]
(6)

Thus the expression 1 using the adiabatic model changes
to Eq. 7. With κ , identifying the specific heat of air and using
the value of 1.4 in the model. Tm , becomes another state
variable model.

d
Pm(t)

dt

(
Vm
Rκ

)
= ṁα (t) Tamb − ṁβ(t)Tm (7)

When the injector delivers fuel into the intake port (item
3 in Fig. 2), not all the fuel is vaporized directly within the
cylinder, but rather part of it remains on the walls of the intake
valve and in areas close to the intake port. Also depending on
the current time of the machine cycle, the intake valve for a
given cylinder is closed at the moment of injection, and will
not enter the fuel injected into the cylinder until the moment
of admission. The above considerations determine a dynamic
delay between the injected fuel and who actually enters the
cylinder, which is defining the future air/fuel ratio AFR. This
dynamic model described in the set of Eq. 8.

ṁϕ = ṁ f v + ṁ f l

ṁ f v = (1 − X)ṁψ (8)
d

dt
ṁ f l = (1/τ f l)(−ṁ f l + Xṁψ)

Than 8 is distinguished ṁϕ as the mass of fuel which reacts
in the cylinder and produces work, ṁ f v is the amount of fuel
vaporized, ṁ f l is the amount that permeates the surrounding
walls, which gradually evaporates with time constant t f l , ṁψ

corresponds to the injection quantity and X is the proportion
of the impregnated part. X and t f l , variable elements are
dependent mainly on the pressure in the manifold and the
current regime. Expressions used for both polynomials are
documented in [5].

Movement dynamics in the crankshaft is expressed in 9,
indicating the relation between the produced torque and the
load torque.

dn

dt
= 1

I
Huηt (Pm · n, λ)mϕ(t − �td) − 1

I
τl (9)

The torque produced is mainly dependent on the calorific
value of fuel Hu , the amount of fuel that reacts mϕ , and an
experimental feature known as thermal efficiency ηt [5,6].
The (t−�t) factor indicates the dead time or delay in the pro-
duction of torque with respect to the fuel injection moment
and is a function of speed and engine design conditions as
expressed by 10.

�td = 60

n

(
1 + 1

#cyl

)
(10)

Ignition timing of the mixture is introduced by Hendricks
as an exponential relationship of the form 11. This expres-
sion influences the torque produced and introduced into the
function of the thermal efficiency.

ηts = e
− θ2

θ2
s (11)

ηts , is named as a factor in thermal efficiency dependent spark
ts retard, θ y θs , the angle being measured before TDC [7].

In addition to the state equations that model these dynam-
ics, in the model used, is added the expressions to calculate
the stoichiometric ratio, which is a measurement that is taken
in the catalytic converter and exhaust, elements 9 y 10 in the
Fig. 2.

Figure 3 shows a block diagram that outlines the com-
ponent implementation in block sbRIO. The AFR and fuel
dynamics are programmed as sub models of combustion
model. The variables are computed in engineering units, and
a component in the FPGA is responsible for translating the
scaled variables in sensors ranges and generating the typical
periodic sensor signal CKP.

National Instruments Corp technology was used for the
implementation of this HIL system. The platform engineer-
ing and programming LabVIEW, has a module control sys-
tem design and simulation of dynamic systems, the model of
Fig. 3 is simulated by the solver ordinary differential equa-
tions (ODE) of this module in the processor within the plat-
form sbRIO on real-time operating system VxWorks [8]. As
mentioned later the same model is implemented in the cRIO
platform for relevant tasks with the control system. Addi-
tional aspects of implementation and execution of the model
is reported in the results section.

The physical outputs of sbRIO platform marked in Fig. 1
as Tm, MAP, λ and CKP, correspond to voltage signals
that simulate the corresponding temperature sensors, man-
ifold pressure, oxygen in the catalytic converter and Hall
Effect sensor for the CKP. Numerical sources for these sig-
nals in the model corresponds to the variables Tm , Pm , and
n, for Tm, MAP y CKP, and for λ the ratio 1

14.7
ṁβ

ṁψ
. At

the FPGA device in the embedded platform is programmed
physical relationship between the measured variable and
the usual output voltage corresponding sensor, numerical
values generated by the model are used as the measured
value.

The temperature in the test bench is measured using a glass
encapsulated thermistor, with measuring range from −60 to
300 ◦C [9], accuracy 0.5 ◦C and response times of 8 s. The
relationship between temperature and the sensor resistance
is given by the expression 12:

RT

RT0

= e
β
(

1
T − 1

T0

)
(12)
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Fig. 3 Model implemented
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RT , is the resistance at temperature T , and RT0 resistance at
reference temperature 25 ◦C. β, is the temperature coefficient
of the material. A simple voltage divider allows a reading of
the change in resistance as a function of temperature, such
that 13:

Tm(v) = RT0e
β
(

1
Tm

− 1
T0

)
× VDC

RC + RT0e
β
(

1
Tm

− 1
T0

) . (13)

To simulate the behavior of the thermistor, Eq. 13 is imple-
mented in FPGA section delaying the output response to
emulate the dynamics of the thermistor. As parameters has
been used β = 3528, RT0 = 200 k�, the resistor of calibra-
tion RC adjusted at 100 � and 5v to VDC .

The common sensor manifold absolute pressure (MAP)
has been modeled to provide a simulation of voltage output
versus pressure calculated in the motor model. The sensor
mounted on the test bench corresponds to the MAP sensor
described in the technical reference [10]. The characteristic
response of this device is shown in Fig. 4, taken from this
reference. The linear function 14 defines its behavior.

Pm (v) = VDC [0.0001Pm − 0.12] (14)

Although the figure presents units in kPa, expression 14
provides unit conversion from bars, to engage the model out-
put units.

The other output of the model is necessary to represent
physical voltage for proper interpretation by an ECU or con-
trol system is implemented in this work, is the signal cor-
responding to the lambda probe. Emulated operation cor-
responds to a lambda probe type oxygen sensor Universal
Exhaust Gas Oxygen also called oxygen sensor wideband.
Specifically the emulated sensor is NTK L1H1, technical

Fig. 4 Transfer function MAP sensor (taken from [10])

information can be found at [11], from which we extract
Fig. 5, showing the transfer function between the voltage
information and lambda sensor output.

To generate the output voltage according to information
AFR which produces the model, a lookup table was imple-
mented with the marked points on the graph and with linear
interpolation the intermediate points are obtained.

The last emulated sensor corresponds to the speed infor-
mationn. Speed in internal combustion engines is determined
by the ECU from the information generated by the sensor
CKP and a toothed steering wheel solidly joined to crank-
shaft. Figure 6 schematically this operation.

The toothed wheel has 60 points for the location of the
teeth uniformly distributed, but a couple of them are not
machined. This feature is used to synchronize the moment
of injection and ignition of the mixture. A Hall effect sensor
is positioned to detect the presence of teeth when the motor
rotates. The voltage signal ranging from −4 to 4 V whenever
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Fig. 5 Transfer function λ sensor (taken from [11])

Fig. 6 CKP sensor operation

it detects the passage of a tooth shown in Fig. 6 (top, right
side, showing the passage of two teeth). The signal from the
bottom shows an oscillogram with the detection of somewhat
more than one revolution by going through missing teeth.

The detection pattern of a tooth is stored in memory and
a timing mechanism transfers each point of the pattern to an
analog output of the FPGA. The update period is modified by
the value of n reported by the model, also a counter monitors
the number of teeth emulated to generate an additional update
delay emulate missing teeth.

The model input signals are processed according to the
real signals of the actuators interposed between the platforms
sbRIO and cRIO. In Fig. 1, blocks that connects to the phys-
ical inputs of the FPGA device in the sbRIO, which are SI,
Finy and TPS. These blocks are test bench real actuators, such
that the connected block to spark ignition (SI) constitutes the
ignition coil which is connected to the spark plug; in the sec-
ondary circuit, together with the spark plug, has been added
a spark detector circuit that allows leading a logic signal to
a digital input of the FPGA and determining the moment

when the spark occurred. By the side of the block connected
to Finy, the block symbolizes a flow meter installed between
the fuel pump and injector rail delivering the actual mea-
surement of the instantaneous amount of fuel injected. The
relationship between the measured flow and the voltage out-
put is linear and conversion is programmed FPGA level, such
that the information provided to the model is given in units of
flow (kg/s). Finally the position sensor TPS of the motorized
throttle is used to provide the real information on the opening
angle α. Angle information is linear with respect to the volt-
age signal delivered by the sensor; this signal is connected
to an analog channel of the FPGA and converted by a linear
relationship to geometric angle information to be used by the
model.

2.3 Optimization problem

In engineering it has become inseparable optimization
requirement in almost all aspects of this: by lack of resources,
by quality, by utility, etc. In the operational phase, opti-
mization requirements of internal combustion engines can
distinguish three aspects or variables: obtaining the maxi-
mum amount of energy, resulting in maximum torque avail-
able at the crankshaft; minimization of fuel used to operate
the machine, resulting in an economic question; and envi-
ronmental awareness and government regulations, reducing
emissions of noxious gases from the combustion [12].

Energy optimization is a desired benefit of the power deliv-
ered by the machine aspect, implying capitalizes on work
capacity. When used for example in a power plant, such a
need may arise from an increase in demand for amperage,
or if the engine is coupled to a mechanical load, usually you
want the motor to move the heaviest load. In transport vehi-
cles, driving feeling, it is responsible for this requirement
optimization; usually the driver expects the engine to bring
the rest of the vehicle to the desired speed quickly, what is
usually done with a strong increase in torque. As determined
by the expression 15, the torque produced by the machine, is
dependent besides the constructive aspects of the machine,
of the amount of fuel ṁϕ reacting:

τc(t) = Hμ · ηt (t − τd) · ṁϕ

Ie
. (15)

So you might think that to maximize the torque reaction
more fuel is added. Well, then there are restrictions to that
amount of fuel, determined by building capacities and limits
of amount of mass to be given proper combustion [7]. On the
other hand, note that this action is punishing economic opti-
mization, and to some extent environmental optimization.

The efficiency is related to the operation of the machine
using the minimum resources. In the internal combustion
engine consumable resources are the air and fuel (energy
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expenditure by the pulse of electrical current to produce
the ignition spark is not considered in this report). Air at
atmospheric pressure is not a resource that requires a busi-
ness transaction to be obtained, so talking about consum-
able resources, the opportunity to be limited to the efficient
use of fuel. It is possible to consider the minimization of
fuel consumption using cost functions, optimization algo-
rithms within, that contemplate the accumulation of spent
fuel through a driving cycle [7], however for optimum con-
trol algorithms minimize usual increase of fuel injected in
each control period.

Independent minimization of fuel consumption, the
injected fuel must ensure stable operation of the machine,
since there is a lower limit of speed for which the machine
is maintained in operation; therefore the injected fuel cannot
be zero [13]. However, the operation of the machine usually
requires additional operating regimes at minimum speed of
stable operation (usually 750 rpm), then the minimum val-
ues of fuel injection will vary depending on the operating
point. In Fig. 7, speed shown in steady state and vacuum, a
function of the throttle opening α and the injected flow ṁψ ,
built with the engine model (Fig. 3) using an ignition advance
27.5◦, constant atmospheric pressure and ambient tempera-
ture. The limits of the surface on the graph are restrictions on
the variability of function arguments speed. The minimum
value of TPS to keep the motor is 16.5◦ and an injection
of fuel flow 0.00015 kg/s. The upper limits are according
to the above regimen used in modeling experiments. The
plane parallel to the base shown in its cutting surface cor-
responding to a speed isoline 2000 rpm with three points
on it demarcating different values α and ṁψ . The point at
the left end shows that a higher fuel consumption (0.0006
kg/s) it is necessary with the minimum opening, however
with a slight additional opening 10◦ it reaches the minimum
fuel consumption, which remains relatively unchanged with
larger apertures, as shown by the two other points to the right
(0.00051 kg/s).

Fig. 7 Map of free response of the model compared to the range of
possible inputs

The environmental aspect is addressed with additional
constituents that have been added to the combustion engine
as solutions to environmental requirements. This element is
the catalytic converter in the exhaust path of the flue gases,
together with the element oxygen sensor provides informa-
tion about the reactions in this (refer to Fig. 2).

In the three reactions occur catalyst that reduce nitrogen
oxides to nitrogen and oxygen, oxidizes carbon monoxide to
carbon dioxide and oxidizing unburnt hydrocarbons to car-
bon dioxide and water [7], so that the harmful combustion
product gases are converted into harmless to the environment.
Two of these reactions require an oxidizing atmosphere is
obtained with gasoline lean mixtures, while the remainder
requires little oxygen, achievable with a rich fuel mixture.
For the three can find a balance simultaneously is neces-
sary to control the amount of oxygen within a very narrow
range. The amount of oxygen present in the exhaust gases
depends on the ratio between the quantities of air mass and
fuel mass deposited in the combustion chamber, what is com-
monly called air/fuel ratio. For gasoline, combustion is the-
oretically complete when the AFR is 14.7, and this data is
called the stoichiometric ratio. Is customary to normalize the
measured AFR as set forth in 16:

AFR = m∝
mϕ

→ λ = AFR

AFRe
. (16)

The mixture is rich if λ < 1, and is poor if λ > 1, with rich
mixtures λ ≈ 0.9 high power can be obtained operating and
lean mixtures λ ≈ 1.5 fuel consumption is decreased [14].
But if the mixture is rich in fuel unburned hydrocarbons are
produced, if it is poor, then nitrogen oxides are produced.

Figure 8 represents the conversion efficiency of pollutants
according to λ. The narrow window displays where the three
reactions are simultaneously and therefore the operation of
the catalytic converter is more efficient. Environmental opti-
mization is located in this condition, in getting a mixture as
close to the stoichiometric point. The lambda sensor or oxy-
gen sensor arranged in the exhaust pipe feedback allows the
richness of combustion.

Fig. 8 Working window of the catalytic converter
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As mentioned, goals can be incompatible watching all
three fronts, although it is possible to find a compromise and
watch multiobjective systems [15]. Another way may be to
switch targets according to the dynamic changes of machine
operation, for example, in transient instants, the optimiza-
tion seeks to maximize the power delivered will be activated
temporarily sacrificing minimizing harmful gases produced
and fuel consumption. Both schemes can be implemented
with relative ease considering optimization schemes pro-
posed by the optimal control theory, addressing the control
of the machine as a dynamic optimization problem solved at
each control period.

In the field of optimal control, the optimization problem is
addressed considering an objective function that relates the
trajectory of state and control effort over a time horizon:

min J = S
(
x(t f ), t f

) +
∫ t f

t0
V (x(t), u (t) , t) dt. (17)

The first term of this expression 17 is called the termi-
nal or final cost, and involving the integral expression is a
functional that can measure the optimal time, the minimum
expenditure and the minimum energy required to bring the
dynamic system from an initial state x (t0) to a final state
x
(
t f

)
.

The functions S and V , can be particularized in the matrix
form of the expression 18.

min J = xd
(
t f

)T Fxd
(
t f

)

+
∫ t f

t0

[
xd(t)

T Qxd(t) + uT (t)Ru(t)
]
dt (18)

With xd
(
t f

)
, defined as xd

(
t f

) = Refx−x(t f ) and xd (t) =
Refx (t) − x(t). Refx , is the final position for the state vari-
able, whilst Refx (t) denotes the trajectory in the time hori-
zon. The matrices are used to weight the deviations of state
variables compared to the references given [16].

The space of the decision variables x(t) and u (t) is
restricted by the system dynamics control, described by the
model equations, and boundaries imposed by physical secu-
rity issues and operating ranges of the actuators. The model
imposes equality constraints and boundaries, inequality con-
straints, as described hereinafter.

In the experiment conducted in [6] to validate the model,
the minimum speed that keeps the engine operation is 0.6
krpm, and maximum security obtained by operating the
engine is 6 krpm. The maximum opening angle of set for
the butterfly valve model used is 90◦ and the minimum to
maintain operation has been defined by the possible min-
imum aperture control engine idle in 16◦. Boundaries for
injection flows are taken from the experimental data at idle
speed and 6 krpm, then the resulting flow range is 0.00015–
0.005 kg/s. Referencing literature AFR control [17], it has

been estimated that trips the stoichiometric ratio of 10 % are
permissible. The usual practice is a window of ±3 % [14],
in these range alternative excursions between rich and lean
not considered harmful. However permissiveness defined in
this aspect allows extending freedom in the control action
to track the speed reference and does not touch the limits
of toxic emissions. Boundaries for the signal λ are given
between 0.90 and 1.1. The remaining state variables, tem-
perature Tm and manifold pressure Pm are naturally bounded
engine operation, dependent as described by the model, of
ambient temperature, TPS and atmospheric pressure, so no
are added boundaries to the problem formulation.

The complete optimization problem the objective function
of the form 18, the mathematical model introduced equality
constraints and bounds for the decision variables are set at 19,
20 y 21. The equality constraints or set of differential equa-
tions are defined for all t in the time interval [t0 t f ] with an
initial value, which in practice is made by a set of measure-
ments.

min J = [
Ref n − n 1 − λ

] [
F11 0
0 F22

] [
Ref n − n

1 − λ

]

+
∫ t f

t0

[
Ref n − n 1 − λ

] [
Q11 0

0 Q22

]

×
[
Ref n − n

1 − λ

]

+ [
α mψ

] [
R11 0
0 R22

] [
α

mψ

]
dt (19)

s.a.

d
Pm(t)

dt

(
Vm
Rκ

)
− ṁα (t) Tamb − ṁβ(t)Tm = 0

dTm
dt

− RTm
PmVm

[
mα(κTamb−Tm)−mβ(κ − 1)Tm

] = 0

dn

dt
− 1

I
Huηt (Pm · n, λ)mϕ(t − �td) − 1

I
τl = 0 (20)

ṁϕ = ṁ f v + ṁ f l

ṁ f v = (1 − X)ṁψ

d

dt
ṁ f l − (1/τ f l)(−ṁ f l + Xṁψ) = 0

0.00015 < mψ < 0.003

16 <∝< 90

0.6 < n < 6

0.9 < λ < 1.1 (21)

The performance index used, then consider the error
against an externally supplied reference constant speed, and
against a reference unitary for the normalized stoichiomet-
ric ratio λ (have been intentionally suppressed time depen-
dencies), coupled with minimizing the waste of resources
in the actions control the throttle opening and the flow of
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fuel injected. Scalar set F11, F22, Q11 and Q22, let give rele-
vance to the solution of the optimization problem permissive-
ness regarding the speed error and emissions, so that more
weighting F11, Q11 becomes more demanding to achieve the
speed reference, perhaps with some issues, and otherwise,
emphasizes a clear environmental goal, a little neglected the
power output of the machine. Similarly, R11 gives weight to
the opening of the air inlet valve, is to say the mass flow
of air into the manifold, and considering a usual commer-
cial situation, this flow does not involve a direct cost, so
this element can be weighted sufficiently low relative to
R22 to tilt the outcome toward the minimum possible fuel
injected.

The optimization problem described by 19–21, is the prob-
lem that the cRIO platform must solve at each sampling
period to grab control of the drive machine and its oper-
ation as required. Within the optimization theory [18], is a
nonlinear programming problem NLP, since the equality con-
straints, that is the model are nonlinear differential equations.
There are several methods proposed to address the prob-
lem: stochastic methods, as adaptive random search, conju-
gate direction, genetic algorithms [19,20]; and deterministic
methods, where the convergence to the optimum can be esti-
mated. The latter methods are suitable for their applicability
in control systems, in a way that allows the solution of the
optimization problem in a time interval determined. Deter-
ministic reclassified into direct and indirect methods. Direct
methods such as simplex and complex to use in general, a
search pattern [21,22], and indirect methods which are sup-
ported in the calculation of derivatives, is required so that the
objective function is smooth with at least three continuous
derivatives. For reasons including the shortest time calcula-
tion of the objective function and that converge faster [23],
besides allowing applicability to the problem given, the latter
type of methods developed for the optimization problem of
engine operation.

An appropriate scheme to solve the optimization problem
defined by 19–21 is the possibility of a reformulation as a
problem of quadratic programming QP. For this the form
of the objective function 19, is suitable because it is the
quadratic form of the generalized form 17. However, requires
that the restrictions are linear. The alternative is to linearize
the model, such that the constraints are transformed to a set of
linear constraints. To do this is then required to run a model
linearization procedure for each operating point required and
solve the problem at that point.

The solution of the problem QP can be addressed, by two
different algorithms Newtonian type: active set methods and
interior point methods. The last few have been developed,
large problems focusing, while the former are widely used
and verified effectiveness in problems of medium and small
scale [18], then suitable for the optimization problem of com-
bustion engine.

Active set method under consideration is defined only for
the convex case. In the case of the objective function of the
quadratic programming problem, this is established by the
definiteness of the weighting matrices, they must be positive
definite or positive semidefinite. In the Newtonian methods,
in an iterative process, is sought a vector of decision variables
x∗, such that the objective function evaluated at this vector
is less than any other neighbor vector x of decision vari-
ables f (x∗) < f (x). Starting from an initial value of this
vector x0, each iteration of the algorithm updates the new
vector in the generalized form xk+1 = xk + dk . The term
dk , corresponds to a function of search direction. In indirect
methods calculate the search direction is done with the use
of information of the gradient and the Hessian of the objec-
tive function, looking convergence within a given accuracy
level. The active set algorithm, also divides the restrictions
in a set of active constraints and a set of constraints inactive
for a current point xk . A restriction, is activated when eval-
uating xk in restricting equality holds, and is inactive when
the inequality holds. The set of active constraints is called the
working set Wk. Starting from an initial set W0 and an ini-
tial value feasible x0, an iterative process continuously solves
a sub-problem QP whose decision variable is a vector step
pk towards optimum, with a number of equality constraints
given by the active constraints in xk . This sub-problem can
be solved directly or by some method of factorization [23].
In the solution of pk if a new search direction is not found,
it is possible that the current point is optimal, then restricted
optimality conditions are checked, associated Lagrange mul-
tipliers are obtained in active constraints and if all are positive
this indicates that xk is the optimum. If it is determined that
the current point is not optimal, then the working set Wk is
modified by removing the constraint with the most negative
Lagrangian and forming a new sub-problem QP. If the result
is a downward direction search, then be calculated for that
length vector step and execute step by updating the current
position xk , if another restriction is activated then it is added
to the active working set Wk.

Deal linearization for each operating point and solve the
optimal control problem it is a possibility if you have suf-
ficient computational resources, since the two processes are
demanding processing, and if the operating point continu-
ously changes the call to the linearization process is con-
tinuous. Another scheme to solve the optimization problem
given by 19–21, is dealing directly with the nonlinearity of
the engine model. I.e. solve the NLP problem, and not refor-
mulated as a QP problem. One option explored for system
2-HIL, is derived from the same problem QP, called sequen-
tial quadratic programming (SQP).

The SQP method resembles the foregoing scheme, in
which an iterative method is that, at each iteration solves a
sub-problem QP defined by a linearization of the restrictions.
The minimum of the problem is used to construct the QP of
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Fig. 9 Operation MPC

the next iteration whose solution is a better approximation to
the optimum, such that the sequence xk, k = 0, 1, 2, . . . con-
verges to the optimum. Each sub-problem QP is constructed
using a quadratic approximation of the objective function and
restrictions on local affine xk approximations. Some schemes
SQP, are supported on the Newton method, and apply the
terms and theorems developed for this, such that the objec-
tive function and constraints must be smooth (three times
differentiable), addition techniques can be considered as the
active set solution which was used in the above scheme. The
development of the algorithm can be found in [18,23].

The active set and SQP methods are evaluated in this
report to determine the ability of the cRIO platform optimally
controlling the operation of the internal combustion engine.
Results of preliminary tests on the solution of an instance of
the optimization problem are discussed in the results section.

The active set and SQP methods are used to imple-
ment control strategies nonlineal model predictive control
(NMPC), to be checked on the cRIO platform. The NMPC
derives its name from the MPC control strategy using a linear
model, while the NMPC using a nonlinear model. However,
was coined in this report to the abbreviation NPMC a pair of
nonlinear control schemes: one based on MPC controllers,
updated by a linearized model at the current operating point
and another, using the internal approximation of the objective
function and the constraints, of the solution method SQP.

2.4 NMPC controllers

With regard to industrial control systems which must be
solved in real time, mechanisms and solution algorithms run-
ning on computing systems discreet and online, such that the
information of the plant and optimization are treated in dis-
crete form. MPC scheme is then formulated based on dis-
crete or discretized model of the plant or process being con-
trolled. Considering the problem of optimizing the perfor-
mance index or objective function 18, and t f = ∞, consider
implementing your solution as an infinite horizon controller.
The design of this controller can be made by repeatedly solv-
ing optimal control problems of finite time so that the horizon
is moving to meet the infinite horizon. At each sampling time
a problem of optimal open-loop control with a finite horizon
is resolved, using the measurements to define the present
state. In Fig. 9, an outline of the process is shown, unshaded
area shows a time window provided by the MPC controller.
The upper part shows the process given in the current sam-
pling period; the lower part illustrates a subsequent sampling
period.

In the current time t , the controller conforms, based on
the model and measurements of the state, problem of opti-
mal open-loop control with a final time for states equal to a
prediction horizon Np, and for the input variables equal to
a control period Nc. Np and Nc they are given in terms of
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sampling instants k and are tuning parameters of the con-
troller. Formed optimization problem is solved by a method
and solution, which has the form of a piecewise constant tra-
jectory, only the first piece is applied to the actuators of the
process, as highlighted in the graph with u(t), that is in the
range [t, t + 1]. A sampling period after, with current status
information, a new problem is formulated with the same size
in the horizons but taken from t + 1, that is with a shift of a
sampling period. Note of the graph that the trajectories of the
output variable differ from one sampling instant to the next
in the control window, this shows the controller operation,
where for a sampling time of the plant behavior is predicted
for a prediction horizon, taking into account current mea-
surements, using the process model and the computed path
control, in the next instant, as the prediction of the real behav-
ior differs, prediction will be adjusted again. So ŷ(t+k|t), in
figure, does not refer to the process measures, as it is either
u(t + k) regarding the process inputs. The notation (t + k|t)
denotes the value of the variable that accompanies, in the
future instant t + k predicted or calculated in time t . It is
valid to consider that the time t , always used as a reference
point, such that as the horizons are fixed for a given parame-
ter, we can do without loss of generality t = 0, and with this
in mind we establish a widespread practice MPC controller
formulation [24,25]. MPC discrete formulation is presented
in Eqs. 22, 23 y 24:

min
u

J = xTN FxN +
Np∑
k=0

[
ŷ (k) − r(k)

]T
Q

[
ŷ (k) − r(k)

]

+
Nc∑
k=0

u (k)T Ru(k) (22)

s.a.

x̂ (k + 1) = Ax̂ (k) + Bu (k) k = 0, 1, 2 . . . Np

y (k) = Cx̂(k)

x (0) = x(k) (23)

Xmin ≤ x̂(k) ≤ Xmax

Umin ≤ u(k) ≤ Umax

Ymin ≤ ŷ(k) ≤ Ymax

⎤
⎦ ∀k

xN ∈ XF . (24)

The objective function is rewritten 19 directly in the form
of 22 and MPC scheme solves for each interval one LQ prob-
lem described by a linear quadratic objective function [26]
(note that LQ is a generalization of the QP), including the
error in the control outputs, crankshaft speed and AFR, a
weigh for inputs, position of the throttle and fuel injection,
including the restriction imposed by the motor model and
operating restrictions, for both the control variables and the
manipulated, at one operating point, where the plant dynam-
ics is defined by the model 23.

The MPC controller is based on a linear representation
of the plant model to predict their behavior, so this repre-
sents a drawback for applications in nonlinear plants. The
literature offers a vast number of possibilities already devel-
oped [27], of which are specifically experienced in this report
two: linearization technique on line, and another with the use
of an explicit algorithm for nonlinear programming solution
called SQP, well face in predictive control problem based on
the nonlinear model NMPC.

2.4.1 NMPC with linearization

The formulation of this MPC corresponds to the objective
function 22 with ŷ = [n λ], r = [Ref n 1] y u = [α mψ ],
with the restrictions given in 21 for all sampling instant k,
but with 25, as prediction model:

dx

dt
= f (x(t), u(t))

∣∣x=xop
u=uop

ŷ(t) = f (x) (25)

x(0) = xop
∧u(0) = uop.

The subscriptopmeans operating point and f (x (t) , u (t))
refers to non-linear engine model. The 25 expression sym-
bolizes the operation linearization equations of the model in
the operating point op and measurements at time k define the
operating point.

The dynamic model 23 is a usual way to describe a linear
system in the state space, continuous representation of this
model is given in expression 26 [16].

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (26)

The state matrices A, B the input matrix and output matrix
C are constant matrices in general, but in the dynamics of the
plant in question, these matrices are functions of time and
other state variables [6]. To address the feasibility of imple-
mentation of the algorithm, several schemes are proposed in
the literature, such as the incorporation of dynamics into lin-
ear parameters varying model and a policy of programmable
gains [28] or parameterization of various MPC algorithms
from a family of linear models along the path or region of
operation and switching the MPC under the supervision of
the operating point [29]. In take advantage of this last strat-
egy, the non-linear system describing the combustion engine,
which in general is given by 27, can be linearized, that is
calculating the state matrices, input and output, from Taylor
series expansion [30] in a neighborhood close to an operating
point and achieve a nominal control un to generate a nominal
state trajectory xn .

ẋ(t) = f (x(t), u(t), t)

y(t) = g(x(t), u(t), t) (27)
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Fig. 10 NMPC with linearizer RT Processor
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Rewriting the variables according to the neighborhood of
the operating point, are introduced into 27, the set of expres-
sions 28.

δx(t) = x(t) − xn

δu(t) = u(t) − un (28)

δy(t) = y(t) − yn

In terms of the new variables restricted to a neighborhood
of the operating point, 27 become 29.

δ ẋ(t) = Aδx(t) + Bδu(t)

δy(t) = Cδx(t) (29)

The constant matrices A, B yC , are calculated according
to 30, as Jacobians of system 27 [30].

A = ∂ f

∂x

∣∣∣∣
xn ,un

B = ∂ f

∂u

∣∣∣∣
xn ,un

A = ∂g

∂x

∣∣∣∣
xn ,un

(30)

The linearization function is introduced to run in parallel
and asynchronously with respect to the MPC controller.

Figure 10 shows a diagram with the components and rela-
tionships between them to the MPC linearized as has been
implemented in the cRIO. A linear MPC algorithm runs con-
tinuously using a linearized model of the engine for the cur-
rent operating point together with the formulation of the prob-
lem for this model. In parallel a component called linearizer,
which contains a nonlinear engine model, runs to provide an
updated linearized model and reformulation of the problem.

Four trigger schemes to run the linearizer have been
checked: at regular time intervals, based on the steady state
error, linearity observing changes from operation point to
another and by estimating a change in the operating point
with observation of the trend of the reference. The circle in
Fig. 9 denotes this element.

2.4.2 NMPC with SQP

Note that despite working in the area of nonlinear process
control, control scheme described above, remains a linear

MPC solution, then at a given instant, the controller uses
the optimal resolving a linear model. The term is not widely
NMPC coined such schemes; on the contrary, it is usual to use
nonlinear programming algorithms. SQP algorithm is an ade-
quate option within the NLP, that has adjusted well in solving
optimal control problems [27,31]. Same as standard MPC,
in that the linear model is used to predict the response of
the system from an initial state to the prediction horizon, the
nonlinear model is used for the same purpose for the standard
NMPC, the difference is that the solution of the future states
with the linear model is obtained with established methods
for solving systems of linear algebraic equations, and for
the nonlinear case using differential equations solvers with
mature algorithms in the numerical solution of differential
equations as Euler or Runge–Kutta. The joint operations of
ODE and NLP solver may involve a higher processing load,
even more so considering the infinite dimension of the design
of optimal control problem, then for a tractable solution to
this, algorithms for NLP problems, the optimal control prob-
lem is converted into a nonlinear programming problem finite
dimensional [25], parameterizing the inputs and the states by
a finite number of parameters and approximating differen-
tial equations during the optimization. In the literature three
methods or strategies are reported for this, called direct meth-
ods [25,27]: single shooting, also called sequential approach
or feasible route, multiple shooting y collocation, the latter
also referred to as simultaneous methods.

In the sequential method only the control variables are dis-
cretized over the time horizon and the model equations are
solved in each iteration of the NLP solver by solver ODE,
such that only the control paths are considered as variables of
optimization or degrees of freedom. For each evaluation, dif-
ferential equations and the cost are numerically solved using
the current estimate of the parameter vector of the inputs
coming from the optimizer, this is the reason by which the
sequential method named, since the optimization and sim-
ulation steps are executed one after the other leading to a
feasible state trajectory.

Sequential schemes have been being efficiently used in
chemical process applications [32], due to ease of implemen-
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Fig. 11 Single shooting for NMPC

tation and reliable by linking and NLP efficient ODE solvers,
with the obvious disadvantage of repeated numerical integra-
tion of the model and do not guarantee the handling of nat-
urally unstable systems. The multiple shooting method, was
developed to address precisely this last drawback, of unstable
systems, performing a partition prediction horizon and for-
mulating a problem for each subinterval, then the solutions
of the models in each partition allow to introduce more infor-
mation of the state variables in the formulation and capture
unstable modes, as the mesh is finer. NLP problem formed
usually increases its size, and also requires ODE solvers effi-
cient enough to solve the multiplicity of models produced.
With regard to scheme implemented for optimal combus-
tion engine controller, it seems that a sequential scheme is
sufficient, since most of the area of functional operational
engine behavior has a naturally stable, boundary regions only
have some degree of instability. Besides the possibility of
using available ODE solvers and NLP for embedded sys-
tems, accelerate the design and implementation of real-time
optimal controller.

The single shooting working scheme is shown in Fig. 11.
In each iteration of the NLP one simulation is performed from
the initial conditions to the prediction horizon in the ODE,
state profile is analyzed for convergence and again the NLP
block calculates a new vector control. After convergence the
optimal control vector is obtained from the NLP block and
the optimal state vector from the ODE block.

The accuracy of the solution depends mostly on the model
solutions in block ODE, and the correct estimation of the ini-
tial values. The calculation of sensitivities block determines
the assessment criteria of convergence of SQP algorithm,
obtains the gradient of the objective function with respect to
changes in the control vector, ∇uk J, k = 0, 1, . . . , N−1. For
this, sensitivity functions are used state xk and the sensitivity
control vector as in [33].

The use of nonlinear optimization algorithm SQP in the
NLP Solver, involves the explicit use of the nonlinear model
of the plant in the formulation of the problem, thus consti-
tutes a problem of nonlinear programming NLP. The gener-
ality of this method is similar to the previous with the opera-
tion of linearization embedded in the algorithm. In the SQP, a

sequence of sub-problems is solved, where for every problem
the model is linearized and a quadratic model of the Hessian
of the Lagrangian is formed at the point of operation [26].
This requires discretize the optimization problem. In each
iteration, the solution is a search direction, and SQP algo-
rithm searches in this direction to a new operating point such
decrement a merit function that determines the convergence
of the algorithm.

2.5 Implementation concepts

An important added value, to be pointing in this work is
the contribution of a quick and intuitive tool for designing
optimal ECU algorithms for SI engines. Two technological
trends support this: HIL platform and approach to interactive
design. Briefly discuss these issues and their representation
or application in the work of this report.

Hardware in the loop test platforms use a technique for
testing embedded systems level, where regularly embedded
controller system functions as a plant or physical process,
but before the duo embedded-plant work together, embedded
hardware is subjected to testing using a process description
based software. The hardware is in a “Loop” with a simulator
of the plant to be controlled. Embedded generated through
interfaces I/O, the governing electrical signals for the actua-
tors which should be interpreted by the simulation model; is
usual also find schemes with embedded actuators in the loop
to circumvent their modeling; at the same time the embed-
ded controller, expects to receive the electrical signals from
the sensors of the process, so the simulator should possibly
perform a translation of the numerical values of the variables
of the model towards scaled values of electrical signals.

The usefulness of HIL testing lies in that testing of control
algorithms with complex plants can be costly and/or dan-
gerous. A test session can result in unstable systems, over-
shoots, and inadmissible behavior; unproductive expenditure
of energy and raw materials; or simply the plant is still nonex-
istent.

The reliability of the results obtained in the HIL tests
depend on how faithful reproduction of the process is within
the simulation system and the rigor of the tests carried out.
It is obvious that a good model of the process is necessary;
covering dynamics, the effects of uncertainty, noise mea-
surement systems, discrete events in addition to continuous
processes; with ODE solvers that solve the models in real
time to ensure determinism and parallel processing for simul-
taneous dynamics that may occur in a process. The inclusion
of the actuators within the loop, if possible, is a point that
adds realism. Consider every aspect seriously contributes to
the creation of a HIL platform with a highly realistic virtual
model of the process.

With a realistic model and a human–machine interface
(HMI) that allows a deep and extended interaction model and
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Table 1 Parameters used for the
model Par Meaning Value

Vm Volume in the intake manifold 0.0001723 m3

Vd Volume displacement of the machine 0.001149 m3

R Universal gas constant 286.9 J/kg ◦K

Patm Barometric pressure 85,113 Pa

Tamb Ambient temperature 298.15 ◦K

α0 Minimum aperture of the throttle 16◦

κ Isentropic coefficient 1.4

si Volumetric efficiency coefficient 0.961

yi Volumetric efficiency coefficient −0.07

Hu Calorific value of fuel 43,000 kJ/kg

I Inertia of the motor shaft 5.2638 kg m2

#cyl Number of cylinders 4

embedded, embedded system designer can trust the design
results are directly applicable to the real plant, ie you can
rely on immediate implementation, “ready to plug and play”.
Then the HMI or operator interface should be conceived
for an outcome with interactive design principles: contin-
uous visual information, full duplex interaction, prevent and
recover erroneous actions, oriented fast and intuitive learn-
ing. This is achievable from the construction process itself,
i.e. from interaction design and software architecture of the
application. In the case, the recommended architectures used
development tools (LabVIEW) contemplated and the follow-
ing requirements associated with the operation of the system
from the hardware platform PC-Windows depicted in Fig. 1
are:

• The general characteristics of each user interface are:
clarity, ease of navigation, concreteness, focused on the
user and functional.

• Changing optimization weighting matrices with online
update and in real time.

• Ease of selection of targets optimization individually and
simultaneously.

• Graphical presentation of trends in each state variable,
each output and each input.

• Various forms of stimulus to the input signals.
• Availability of numerical tools, and 3D graphics for data

analysis simulation.
• Creation of test scenarios with possibilities of operation

in the limit, insertion of disturbances and noise models,
and dynamic load changes.

• Update of model parameters online, and aggregation of
uncertainty.

• Inserting errors NMPC controllers and control processes
discrete events.

• Simulation of failures of sensors and actuators.

In the next section some views of software architec-
ture used for meaningful interaction experience for designer
ECU’s with the system are reported.

3 Results and discussion

The aim of the research, encompassing this report, is to build
HIL platform, to implement optimal control units for the
internal combustion engine. In hardware unit is implemented
model, and in another control unit is implemented. Once the
control unit is implemented, tested and verified in perfor-
mance in controlling the hardware simulated plant, should
do with the real engine. The measure of success is the con-
trol unit that works with the model to work with the real
engine in a plug and play manner.

The first results of this purpose are reported here: model
implementation, model behavior and some validations with
real plant; implementation of the ECU, software architec-
ture, preliminary tests the ability of the control hardware to
solve the optimal control problem, and performance testing
of complete scheme running two different types NMPC speed
controllers.

3.1 Implementing the model

Table 1 corresponds to the set of constants and initial values
for the model captured in Fig. 3, which correspond to the con-
structive parameters of bench tests as described in [6]. Some
functions and parameters as those for the volumetric and ther-
mal efficiencies were taken from the literature, specifically
[5], but also in the results of [6], use has been validated with
experimental data combustion engine with the corresponding
error study. It has taken that job validating two state variables
in Figs. 12 and 13.
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Fig. 12 Validation for Pm
(from [6])

Fig. 13 Validation for n (from
[6])

Fig. 14 Final model unit architecture

As mentioned in the materials section model implemented
in the platform sbRIO running on the microprocessor device
under ODE solver. Furthermore FPGA hardware realizations
were added for simulating the physical behavior of the sen-
sors, therefore, sbRIO platform on the full set was simulated
engine-sensors. Real actuators have been used in the control
loop, and the signals that identify the actuator drive function
as inputs to the model. A conversion scale units and treatment

through the FPGA hardware was implemented to translat-
ing electrical signals into numerical values in engineering
units. A representation of the resulting scheme is shown in
Fig. 14.

In Figs. 15 and 16 captures model simulation tests are
shown in their free response to changes in α and mψ inputs.
ODE solver parameters and initial conditions are presented
in Table 2.
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Fig. 15 Model behavior simulation (low speed)

Fig. 16 Model behavior simulation (medium speed)

Table 2 Parameters used for model simulation

Parameter Value

Solver method Runge–Kutta23 (variable size)

Initial step size 0.01s

Minimun step size 100 ps

Relative tolerance 0.001

Absolute tolerance 1E−7

CI n 0.8 krpm

CI Pm 0.2393 bar

CI Tm 293 ◦K

The upper and lower parts of the figures are synchronized
in time; in Fig. 15 stimulations low speed zones are shown.
Changes successive step types are applied on the input mψ

leaving the opening angle of the butterfly constant, immediate
response showing the shaft speed and enriching the air/fuel
mixture. Then, the flow of injected fuel is left constant and
stimulation is performed on the angle α. The responses are
strong changes in the AFR impoverishing mixture, and even
slight noticeable changes occur in the speed of the engine.
Temporal responses are comparable to the results of valida-
tion of [6], should take into account differences in the time
scales.

In Fig. 16, the behavior of the model led to a scheme
shown more accelerated greater 3 krpm, shown that changes
in the quantity of fuel injected is primarily responsible for
the dynamic changes of the rotational energy of the machine.
Notice how a change in openness does not generate notice-
able fluctuations in the dynamics. Rising fuel immediately
reflects changes in AFR.

The results presented in the graphs are given in real time
taken for data acquisition systems from the third compo-
nent of the platform named “Interface Operation and Mon-
itoring” running on a Windows desktop operating system.
Table 2 provides the rigors model for implementation with
relatively small time steps and low error tolerances to ensure
sufficiently high accuracy and numerical resolution.

3.2 Implementation of control unit

The second element of the 2-HIL architecture corresponds
to the ECU. The technology platform to build is similar to
that used to implement the model, but with the main feature
of increased robustness technology, so much in their enclo-
sure like protection from electromagnetic interference, with
degree of protection IP 40. This feature allows use with con-
fidence in an industrial environment and its use in the auto-
motive field; this supports the goal of providing connectivity
plug and play mode.
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The platform modules have power outputs suitable for
handling injectors and ignition coils installed, power output
as the motor driver to butterfly, besides conditioning sys-
tems TPS signals, CKP, MAP, temperature sensor and lambda
probe.

As preliminary tests to verify the ability of the platform
processor for executing operation on the NMPC controller
combustion engine, the Active Set and SQP algorithms were
checked, using commercially available software components
for use in real-time platforms.

Functions as “Quadratic Programming.vi”, “Constrained
Nonlinear Optimization.vi” and “SIM Linearized.vi” are
software units coded in LabVIEW and copyrighted from
National Instruments used for testing in solving the opti-
mization problem of engine operation, as well as other pro-
gramming tools and solvers of differential equations.

To solve the discrete problem formed from 19 to 21 must
be rewritten in the form of a general quadratic programming
problem. To do this, the two investigated formulations are
called the spread out formulation and formulation condensed
[34]. In the second, the states are algebraically operated
for the decision variables correspond only process inputs,
whereas the former considers the whole set as decision vari-
ables. Both methods somehow increase the weight coefficient
matrix of the objective function and the coefficients of the
model to set up a problem that covers the prediction horizon.
This treatment can be consulted in the literature referenced.

Table 3 shows the times taken by the RT processor to solve
an optimization problem. Processing time taken to solve the
spread out and condensed linearized formulations solved
with the algorithm Active Set for different prediction hori-
zons are compared, and the time taken for the SQP algorithm
for nonlinear solution for three prediction horizons.

Table 3 Processing times in the solution of the problem

Np Scattered QP (ms) QP condensed (ms) SQP (ms)

0 1 NA –

1 2 3 –

2 9 8 –

3 19 14 –

4 39 24 –

5 180 91 58–115

6 4302 165 –

7 – 328 –

8 – 342 –

9 – 154 –

10 – 192 67–190

15 – 384 –

20 – 105–284

Fig. 17 Linearization processing time

According to the time taken for the transition period of
the motor response 2 s controlled factory ECU, taken from
the experiments for model validation (see Fig. 13), the con-
troller must solve the problem in less time than 200 ms. The
table shows that the formulation scattered lower times were
achieved at 200 ms for prediction horizons of five sampling
periods, meaning that higher prediction horizons are not prac-
tical. Is desirable to use small sampling periods, but this
may mean that the model does not estimate the full transient
behavior to reach steady state; and large sampling periods
subtract accurately the solution implications of instability
and steady state error within a control loop. The condensed
formulation allows defining prediction horizons wider, but
it should be noted that also takes significant linearization
processing times. Figure 17 shows a histogram 350 of a series
of processing time measurements for different points of oper-
ation. It can be inferred that the time it takes the linearization
is 225–300 ms. The variability is mainly due to the lineariza-
tion algorithm must find that the operating point is a point of
steady state (Fig. 17).

The SQP algorithm shows great superiority, apart from not
needing to use the linearization, can be defined prediction
horizon of up to 20 sampling periods. A drawback can be
seen, when very short horizons are used, since the ODE solver
would cut off simulation before reaching steady state and the
solution found may not be enough to bring the state to the end
point due to information biased of the solution. One possible
solution, as specified in the literature of SQP method, meets
the requirement that the initial vector is sufficiently close to
the optimum.

Having verified the feasibility to solve the optimization
problem in the time required, is implemented and checked the
NMPC controllers with the necessary components to support
engine operation:

• PI controller for the throttle position
• Knocking compensator
• Synchronizer spark
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Fig. 18 Final control unit architecture

• Synchronizer injection
• Scaling the sensor units

The implementation details of these components are not
reported here, but generalizations about it can be found at
[7]. In Fig. 18, the architecture of the implementation of the
control unit presents. These elements are implemented at the
hardware level FPGA. The figure shows the representation
linearization NMPC, however remains the same architecture
with the NMPC SQP based algorithm.

The remaining figures show the initial performance test
system control 2-HIL with both strategies NMPC control.

Figure 19 shows the behavior of NMPC based on a stan-
dard MPC controller with linearization in the current operat-
ing point. MPC standard solves the problem of optimization
in each period using a quadratic programming algorithm QP.

Various schemes for updating the linear model were
checked:

(a) MPC controller action: after starting the engine and a
few seconds of open loop control is activated.

(b) MPC controller action: Before starting the engine con-
troller is active. Setpoint changes are shown in lower
operating areas. The reference is achieved in 200 ms
with zero offset.

(c) Linearization offset: in error detection, linearization is
triggered. Middle performance operation area in shown.

(d) Performance at higher operating areas: uncorrectable
error, active constraints.

(e) Timed linearization: is linearized every 100 ms and MPC
parameters are updated a varying overshoot, occurs in
most low ranges.

(f) Linearization change reference: linearized whenever the
reference changes. Offset and overshoot is corrected, but
has a small delay in the response

In Fig. 20, the simulation results of the control unit execut-
ing a NMPC based on an algorithm presented SQP. Tests on
various areas of operations have been checked: in a. behavior
shown in lower operating zones, a settling time of 400 ms is
observed, zero steady-state error; as shown in b. solution time
affects loop response inputting a dead time and in areas of
higher operation as shown in c. offset becomes more critical.

3.3 Implementation of the operator interface

Sustained architecture for implementing each component and
complete system 2-HIL is recommended for CompactRIO
systems the manufacturer for embedded applications running
in real time. Figure 21 shows part of the view of implementa-
tion adapted to the case. The breakdown of the components
of the lower platform already described. The upper platform,
which as stated is a desktop with Windows operative system,
contains a set of software components framed in an appli-
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Fig. 19 NMPC with SQP

Fig. 20 NMPC with QP

cation denoted as “USER INTERFACE VI”. VI, referred
to by the acronym “Virtual Instruments”, as it is commonly
referred to applications built with the software tools that have
been used. This set of components expose a user interface
that allowed strong interactive experimentation with com-
ponents of the other two platforms for the proper design of
NMPC controllers which reduces to the choice of weight
matrices. The components frame the requirements set forth
in Sect. 2.4, e.g. the component “UI Tuning controllers” has
mechanisms to update the matrices F, Q y R, and store them
along with the responses obtained, that become input in the
“Analysis tools” component; in the component “UI Scenario
Building” paths are defined for both speed n to λ, the bounds
are set for restrictions, and trigger methods are switched for
linearization processes for linearization based NMPC, dis-
turbances are inserted, and is simulated in the loaded motor

shaft. The construction of the components and their interre-
lationships with other components and other components in
the other platforms was supported on software architecture
recommendations, and its detailed description is beyond the
scope of this report.

3.4 Final discussions and next steps

The NMPC controllers with QP show acceptable behavior to
follow the reference from different model updating schemes,
usually changes speed reference are not presented in the form
of step, but as a ramp (assume that the reference is given by a
user pressing the accelerator pedal) this necessarily reduces
overshoot shown in e. and operating point changes are grad-
ual, so error correction due to a bias in the point of operation
is milder than in c.
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Fig. 21 Implementation view

The operation with the second NMPC with SQP, is also
satisfactory carrying the engine speed the reference in very
short times, susceptible of improvement, taking lower pre-
diction horizons. As mentioned, this can lead to a false opti-
mum because of biased information, but this can be corrected
by implementing mechanisms that generate feasible initial
points much closer to the optimum, this also would correct
the steady state error present in c (Fig. 19).

With the above results it is and validates the proposed
platform as a possible means for the design and testing of
ECUs for internal combustion engine ignition. Another check
is that the computational power of the equipment proposed
as control elements allows the introduction of NMPC control
algorithms the plant in question and equivalent engines. This
will result in the ECU’s ability to design for optimization on
all three fronts: environmental, economic and energy, either
simultaneously or dynamic objective functions.

The component corresponding to the model, is likely to
be improved from different points of view, among them: cor-
rected by adaptive algorithms experimental polynomial func-
tions used for the thermal and volumetric efficiencies, as well
as models of the time constants for dynamic fuel presented
in 8; subjecting it further validate the component to be con-
trolled by the ECU factory.

Reduction in time can be achieved from different points
of view: linearisation process can be downloaded to FPGA
hardware level with corresponding increase in computa-
tional speed that entails, Active Set and SQP algorithms spe-
cially tailored to solve the problem at hand can leverage the
structure of the problem and improve the matrix operations
involved.

The results in the operation of the algorithms show a pos-
sibility for the feasibility of practical embodiment for the
optimal control of internal combustion engines without use
of cartographic injection.
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