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Abstract

The problem of diffraction of cylindrical and plane SH waves by a finite crack is revis-
ited. We construct an approximate solution by the addition of independent diffracted terms.
We start with the derivation of the fundamental case of a semi-infinite crack obtained as
a degenerate case of generalized wedge. This building block is then used to compute the
diffraction of the main incident waves. The interaction between the opposite edges of the
crack is then considered one term at a time until a desired tolerance is reached. We propose
a recipe to determine the number of required interactions as a function of frequency. The
solution derived with the superposition technique can be applied at low and high frequencies.

Keywords: wave propagation, wave scattering, frequency domain analysis, diffraction,
SH waves.

Introduction

The determination of the scattered field produced by an elastic wave incident upon a crack of
finite length is of fundamental relevance in many different problems of physics and engineering.
For instance, cracks are frequently encountered at the interior of homogeneous media in
the form of defects in machine parts (Garnier et al., 2011), as faults at the interior of the
earth crust (Murai, 2007) or as cavities enclosing fossil energy reservoirs. In all of these
cases, efficient engineering applications or understanding of physical phenomena, are strongly
dependent on the level of accuracy and on the correct interpretation of results from the wave
scattering problem associated to the crack problem. Although only in rare cases the existing
cracks appear isolated, knowing and understanding the solution to the diffraction caused by



a single crack plays a key role in these most general scenarios. This paper revisits the well
known problem of scattering and diffraction of horizontally polarized SH waves caused by a
crack of finite length at the interior of an isotropic elastic full-space. Despite the fact that
several studies have been conducted in the subject, alternative solutions are useful as they
bring further understanding of the problem. In this work we find an approximate solution
to the field scattered by a finite crack upon incident plane and cylindrical SH waves. The
solution is found using superposition of fields contributed by different diffraction sources of the
Sommerfeld’s type and although it takes the form of an infinite series, in our approach accurate
approximations can be obtained retaining just a few terms in the series without dealing with
convergecy analysis. Moreover, the solution is built following a physical reasoning which is
attractive for the analyst.

The problem of scattering of plane SH waves by cracks has been widely studied from
a numerical and an analytical point of view. A review of seminal works in the subject can
be found in Mow & Pao (1971) and in Achenbach et al. (1982). A landmark contribution of
analytic nature is identified in the work by Sommerfeld (1896) who derived the solution for the
diffraction of S H waves induced by a semi-infinite crack. That work was also relevant since it
opened the door to a number of studies dealing with more general cases. For instance Sanchez-
Sesma & Iturrardn-Viveros (2001), performing superposition of Sommerfeld’s solution, found
an analytic expression for the diffracted field produced by of a plane S H wave incident upon a
single crack of finite size. In that solution the first diffracted waves generated at the tips were
limited to propagate as plane waves when interacting with the opposite tip of the crack, thus
neglecting its original cylindrical nature. However, these authors showed that the resulting
inaccuracies were only noticeable at low frequencies where the crack opening displacement
(COD) was small. This solution was later extended in Iturraran-Viveros et al. (2010) to
consider also the case of an incident cylindrical wave and both solutions have since then been
used by various authors to validate numerical methods, (Kriiger et al., 2005).

An analytical solution in the time domain was also found by De Hoop (2000), who derived a
closed-form expression for the scattering of a plane S H wave introduced by a generalized linear
slip fracture of finite length in the Kirchhoff approximation. Similarly, Caleap et al. (2007)
found an analytic expression for the angular function proposed by Waterman & Truell (1961)
in order to describe the far field scattered by a single crack. In more recent contributions
the problem was also solved by Tsaur (2010) using a region matching technique leading to
the treatment in terms of separation of variables and by Chen et al. (2013) who solved it
using a set of boundary integral equations, while recent numerical approaches based upon
direct (and indirect) boundary element methods and finite difference schemes are identified
in Iturraran-Viveros et al. (2005); Pérez-Ruiz et al. (2007); Chen et al. (2012).

On the other hand, the interpretation of a semi-infinite crack as a particular instance
of a generalized semi-infinite wedge, created the possibility of adapting solutions previously
derived for wedges within the context of electromagnetic waves to the scattering of elastic
fields. For instance MacDonald (1902) obtained a series expansion for the total field in a
wedge under plane and cylindrical incident waves in terms of Bessel functions. This solution
was later re-derived by Sanchez-Sesma (1990) and used in Sdnchez-Sesma & Iturraran-Viveros
(2001) as a measurement of the level of error introduced by the plane wave approximation
introduced in the secondary diffracted waves. Similarly, Hudson (1963) studied the wedge
under a line source of harmonic SH waves for combined Dirichlet and Neumann boundary
conditions and expressed his solution in the form of an infinite integral, while Abo-Zena &
King (1973) solved the problem of a wedge under a line source applied along its free surface.
In that solution the response was separated in terms of the incident, reflected and diffracted
fields, but the total diffracted term was given as a singular integral. The idea of separating
the total field in a wedge into terms related to the incident, reflected and diffracted fields



had already been used in the geometrical theory of diffraction (GTD) from Keller (1957,
1956, 1962). That approach was later improved by Kouyoumjian & Pathak (1974) who found
the diffracted field for a generalized wedge under incident plane and cylindrical fronts in
terms of diffraction coefficients similar to those used in the solution of reflection-transmission
problems.

The superposition technique, based on the addition of incident, reflected and diffracted
waves was recently generalized by Jaramillo et al. (2013), where it was used in the solution of
scattering of plane S H waves incident against canyons of arbitrary shape. Because the method
is based on the addition of diffraction terms, it has been given the name superposition based
diffraction (SBD). Its main distinguishing feature is the fact that it results in a series solution,
where high levels of accuracy can be reached even when only a few terms are retained. In
other words, in the superposition based diffraction technique there is a direct relation among
the infinite terms in the series and actual diffraction events and the number of required terms
can be shown to be frequency dependent. In this work we use this superposition approach
and construct the solution like in Sdnchez-Sesma & Iturraran-Viveros (2001), where the finite
crack is obtained as the superposition of two semi-infinite cracks. While these authors used
as starting point the fundamental solution by Sommerfeld (1896), accounting only by the
diffraction of plane waves, we started from the generalized wedge solved by Kouyoumjian &
Pathak (1974) which directly considers the initially diffracted waves as cylindrical fronts. Our
solution is also different since we find the displacement field everywhere, and not only the
crack opening displacement. The physical character contained in the solution process makes
the solution very appealing for the validation of numerical implementations.

In the article we first describe the canonical solution by Kouyoumjian & Pathak (1974),
corresponding to the diffraction of electromagnetic waves by a generalized wedge. That
solution is used here to derive the contribution from the diffracted field which is used to
build the solution to the diffraction by a finite crack after its recursive application in terms
of primary and higher order diffraction terms. The obtained solution, valid for cylindrical
and plane waves is then simplified and presented in terms of a simple expression valid for the
particular case of normal incidence. Since the proposed solution takes the form of an infinite
series, we propose a recipe to determine the number of required terms, given the frequency
and a predefined tolerance. It is found that accurate solutions are found with just a few
terms in the series. In order to validate our solution to the crack problem, we compare our
frequency and time domain results with those obtained via a numerical boundary element
method.

1 Diffraction by a semi-infinite crack as a particular
instance of the diffraction by a generalized wedge.

In this section we describe the canonical problem forming the basis of the superposition
based diffraction technique (SBD). The problem domain and incident wave field is defined
in fig. 1. It consists of a generalized wedge with traction’s free surfaces intercepting at a
corner singularity of external angle v where v is a factor that completely defines the wedge
varying between 0.0 and 2.0. The generalized wedge is submitted to an incident plane front
characterized by its propagation direction and forming an angle ¢’ with the free surface of
the wedge. In fig. 1, regions of existence (or absence) of incident and reflected rays are
fully described and denoted by the common jargon of geometrical theory of diffraction like
illuminated (or shadow) zones.

The lines separating the different regions of existence of incident and reflected rays, and de-
noted in the figure like reflection and incidence boundaries, represent regions of discontinuity
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Figure 1: Plane wave incident against a generalized wedge

of each term considered independently. The diffraction field generated by the corner singu-
larity corresponds to a cylindrical wave that penetrates into the shadow zone and restores
continuity along these reflection and incidence boundaries. In summary, the construction
process to find the solution for a single wedge amounts to finding the total field contributed
by the incident and reflected fields w™™ and w”, which are discontinuous or even absent from
certain regions, plus the consideration of the diffracted field w?” generated at the corner sin-
gularity and restoring continuity everywhere, i.e., the term w” provides the proper transition
between the illuminated and the shadow zones.

In the proposed methodology, the contribution of the diffracted field is taken directly from
the approximate solution proposed by Kouyoumjian & Pathak (1974) and corresponding to
a generalized infinite wedge submitted to an incident plane or cylindrical wave. The case of
a cylindrical diffraction front may correspond to a previously diffracted field or to a primary
incident cylindrical wave. The generalized solution for the diffracted field is given in eq. (1)
for a field point with coordinates (¢, r) as follows

e ) 1 (¢ — ) ,
0P (o) = A oot (TR (61 (0 4)

+cot (W) F(kLb™ (¢ — ¢'))

+ cot (W) F (kLb" (¢ +¢'))
+cot (W) F (kLb (¢>+¢’))} (1)

where r =radial coordinate to the field point measured from the vertex of the wedge, ¢ =
angular coordinate measured with respect to the reflection boundary, ¢’ =incidence angle
measured with respect to the reflection boundary, vm = wedge angle with 0.0 < v < 2.0,
r’ =radius of the incident cylindrical wave (for the diffraction of a cylindrical front), k =wave
number and [ =velocity of wave propagation. The remaining terms appearing in eq. (1) are
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From the solution described in eq. (1) it is clear that the diffraction yields a cylindrical
front and that for values of ¢ corresponding to points far removed from the incidence and
reflection boundaries, the amplitude decays with 1/ Vkr. On the other hand, right at the
incidence/reflection boundary the diffracted field is discontinuous. This is a required condition
that must be satisfied by the term w” in order to match the corresponding discontinuity
appearing in the superposition of the incident and reflected contributions.

2 Diffraction by a finite crack via superposition of
diffraction sources.

In order to obtain the solution to the diffraction of incident SH waves by a single crack we
start from the solution to the problem shown in fig. 1 and given in eq. (1). If the angular factor
is given the particular value of v = 2.0, the generalized wedge collapses into a zero-thickness
semi-infinite crack with traction free surfaces. Two such cracks, defined in y € (—o0,a/2]
and y € [—a/2,00) can then be superimposed to yield a single crack of length | = a defined
by the domains of intersection of the two fundamental cracks; i.e., in y € [—a/2,a/2]. The
above superposition scheme is described in fig. 2 where we also show the specific parameters
that must be applied in eq. (1) in order to consider incidence of plane and cylindrical fronts.
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Figure 2: Problem definition and construction of the solution for a finite crack via superposition
of fundamental semi-infinite cracks.

The incident wave is defined by

wint — woe[ikxsin(¢>’3)+ikycos(¢jg)]

for plane incident wave, and

wne = 76(2
VR
for cylindrical incident wave, with R measured from the source point (x,ys) and with wy
being the amplitude at R = 1.0.

Using a plane or cylindrical incident wave and denoting the reflected field by w", the
solution in the illuminated zone takes the form;
wl = w™ + W +ws 4+ wp + WA+ WB_A + WA-B-A +WB_A_B + ... (2)

while in the shadow zone of the incident and reflected rays it reads;

wT:wA—FwB—FwA,B+wB,A+wA,B,A+wB,A,B+... (3)

and

wl = w4 wg +wp + WA_B + WB-A +WA_B_A + WB_A_B + ... (4)

respectively.

In the expressions above the extreme subscripts refer to the first and last source of diffrac-
tion. For instance, the term wp_4_p_ 4 indicates a diffracted wave that originated at point
B and subsequently experienced diffraction at A, B and A again.



In order to obtain the total diffracted field it is necessary to apply eq. (1) recursively. After
some mathematical manipulations the final solution for the diffracted field can be written like;

N N
D(¢a,dp,ma,78) = Aa Z VAG (¢a,d4,ma. La) + Ap Z VeG (¢B,¢p,r8, L)  (5)
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In the above, the subscript  may take the specific values A or B corresponding to the
crack tips. Accordingly in eq. (5) ¢e and 1 represent the angular and radial coordinates of a
field point measured with respect to the crack tips A and B, r, is the radius of the incident
cylindrical wave also measured from each tip of the crack. A, is the amplitude and phase of
the incident front upon arrival to a given crack tip, the parameter N indicates the number
of terms considered in the series. The contribution from the incident fronts at the tips are
given by;

Aq = wince[ikacos(¢;3)/2}
Plane incident wave . ) ,
B = wincel—ikacos(¢p)/2]
A4 = wince(—ikry)
Cylindrical incident wave azwoe , (6)
B = wznce(—zkrB)

Accordingly, the exact solution corresponds to the case N — oo. This parameter has the
physical meaning of number of diffraction sources considered in the series. Every increment
of this parameter implies the consideration in the series of a new diffracted wave, travelling
from one crack tip to the other. Each additional considered wave has an amplitude which is
smaller than its parent wave. This relation between the number of terms appearing in the
series and the number of diffraction sources allows the solution to be extended to any desired

a

accuracy depending on the value of the dimensionless frequency parameter n = ¢ relating
the crack length to the incident wave length.



Particular solution for plane incidence at ¢’y = 7/2.

In the particular case of normal incidence (i.e., ¢’z = m/2) and due to the geometric symmetry
of the problem, terms like A4 and Ap in eq. (5) take equivalent values. Thus the diffracted
field simplifies into:

N
wP (A, dp,74,78) = Aa Z

n=1

(_e(—%(ka+7r/4))

n—1
WF (ka)) [_G (d)A, TA, LA) +G (¢B7 B, LB)]
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Once again the parameter N limiting the series depends on the value of the dimensionless
frequency n and the pre-established level of accuracy. At larger values of 7, relatively small
values of N are required. Physically, this means that at larger values of 7 the solution
corresponding to a desired accuracy is achieved with less diffraction orders.

A recipe to determine the diffraction order N required for a
predefined tolerance.

We now propose a procedure that can be used to estimate the number N of diffraction orders
that must be considered in eq. (5), given a value of the dimensionless frequency parameter 7
and a predefined tolerance tol. This tolerance is defined like a percentage of the amplitude
Ajs of the incident front, once it arrives to a specified crack tip. The amplitude must be
selected like Ap; =max(|A4l|, |Ap|) where A4 and Ap have been defined previously. The
procedure guarantees that the smallest diffracted wave contained in the solution will have an
amplitude smaller or equal to tol x Ap;. The procedure is listed as follows:

1. Define a value of the dimensionless frequency parameter 1 and tolerance tol.

2. Plot the complex amplitude function

A B _e[—i(kr+7r/4)]F o
(r) = i (2kr) (8)



with

g = 2T

a

The function A(r) represents the amplitude of the transfer function of the first order
diffraction produced by a plane front interacting with a tips and travelling towards
the shadow zone. We have selected the amplitude function for a plane front since this
wave always contains values greater than those in a cylindrical wave. Therefore, if the
tolerance is reached for a plane wave, it is also valid for the analogous cylindrical wave.
For cases in which a < r < 2a, the result corresponds to the second order diffraction. In
general, for values in which (n —1)a < r < na, the result for the amplitude corresponds
to the n—th order diffraction.

3. From the previous plot, identify the value of r for which A(r) < tol.
4. Use the previously identified value of r to compute N like;

N =int(r/a) +1
where int(e) is the integer part function.

The procedure is illustrated with reference to fig. 3 where we show the variation of A(r)
vs r for n = 3.0, tol = 0.05, a = 1.0 and Ap; = 1.0. The red line indicates the threshold under
which tol has already been reached. In this case the obtained number of diffraction orders
is N = 4. This implies that if the solution is constructed with up to 4-th order diffraction
terms, there will not be any diffracted waves with amplitude greater tan 0.05.

0.9

0.1F int(r/a)=3 1

00 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 3: Variation with distance of the amplitude function A(r) for a diffracted wave used to
determine the maximum order of diffraction N required in order to reach a specific tolerance tol
given the dimensionless frequency 7.



3 Results

We now validate our current solution to the problem of scattering of SH waves by a finite
crack constructed by a diffraction based superposition approach. To that end we obtained
low (n = 0.5) and high (7 = 5.0) frequency results for incident plane and cylindrical waves.
Our SBD-solution was compared with numerical results from a direct boundary element
method (BEM). The study was conducted in the frequency and time domain. Since in the
SBD-solution the only approximation is in the diffracted field, we focused on this specific
component of the response by studying the transfer functions over the whole frequency range
along the crack surface in the shadow zone. On the other hand, the validation in the time
domain was conducted in terms of synthetic seismograms, also for receivers over the shadow
zone and in terms of snapshots of the propagation patterns over the complete computational
domain. As an additional validation we also compared our results with those obtained by
Sanchez-Sesma & Iturraran-Viveros (2001), where the diffracted waves were assumed as plane
fronts neglecting its cylindrical nature. The analyses were first conducted in the frequency
domain, where we computed the transfer functions between the total response and the incident
wave. These TFs were subsequently fast Fourier transformed in order to derive time domain
results after applying a Ricker pulse defined by R(t) = (277 — 1)e™ ™, where 7 = fu(t — tin;)
with f.= central frequency (or equivalently in terms of 7. = af./f ) and t;,;=initial time
for the intense phase. On the other hand, the results at low and high frequencies were
obtained with diffraction orders of N = 5 and N = 3 respectively. It must be recalled that
every additional term in the series implies cylindrical waves emanating from each diffraction
source. In this work we considered a crack of unit length, located at y = [—a/2,a/2] (see
fig. 2) and embedded in a homogeneous elastic infinite medium with mass density p = 1.0
and a shear wave propagation velocity 5 = 1.0.

In order to show the convergency properties in our series solution, we display in fig. 4
contour maps for the amplitude of the TF for a set of receivers located over the shadow
zone, where only the diffracted field is present and for a range of values of the dimensionless
frequency parameter n = (0,4]. The receivers are located over the line y = [—a/2,a/2] and
the results in each case correspond to the relative error between the SBD method and the
BEM algorithm computed as | BEM — SBD | / | BEM |.
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Figure 4: Frequency domain contour maps for the amplitude of the transfer function for a set of
receivers over the shadowed zone of the crack surface. The SBD-contours (row 2 to 5) show the
relative error between this method and the BEM solution for orders of diffraction ranging from
N=1to N =4.

The first row of contour maps in fig. 4 displays the numerical solution for the total field,
while the subsequent 4 rows show the relative error between the SBD and BEM numerical
results for increasing orders of diffraction ranging from N = 1 to N = 4. As expected, the
results neglecting the interaction between the crack tips, corresponding to a single diffraction
term as shown in row 2, exhibit large differences with respect to the numerical algorithm.
This difference is stronger in the low frequency regime since at those frequencies the amplitude
of the first diffracted wave is still very large and it requires several higher order interactions

11



before their contribution can be neglected. However, it is interesting to observe how at
high frequencies a good approximation is obtained by the SBD method even with a single
diffraction order. This low level of interaction between the two diffraction sources at high
frequencies, is evident from the 1/ Vkr decay present in eq. (1). On the other hand, when
3-rd and 4-th order diffraction is considered in the SBD solution, accuracy is maintained at
high and low frequencies.

An interesting result is observed from the numerical solution for the total field associated
to the responses displayed in the first and third columns for cylindrical and plane fronts under
normal incidence, and for those from the second and fourth columns for cylindrical and plane
fronts under an asymmetrical incidence . It is observed how, regardless of the type of incident
wave the response in the shadow zone, having only the contribution from the diffracted field,
is very similar in amplitude and spatial distribution for the cylindrical and plane incidence.
This independence of the response in the shadow zone from the type of incident wave, is the
result of the solution over this zone being contributed by the addition of cylindrical sources
located at the tips.

Figure 5 displays snapshots of the propagation patterns for the case of plane waves in-
cident with 6, = 90° and 8, = 120° over computational domains of size 10 x 10 and 3 x 3.
The excitation in each case is a Ricker pulse with low and high characteristic frequencies and
with an SBD-solution obtained with diffractions of 5-th and 3-rd order for the low and high
frequency computations respectively. Each frame in the figure, qualitatively compares the
results obtained with the SBD approach (left) and those from the BEM algorithm (right) at
different instants of time. Although these comparisons in the time domain are highly qual-
itative, several observations indicating the validity of the SBD technique can be made. For
instance, in every case, and as a result of the interaction between the tips of the crack, cylin-
drical fronts emanating from each diffraction source can be observed after the advancement
of the incident front. It is also observed how the incident front is progressively recovered over
the shadow zone of the incident rays. This recovery is completely achieved by the diffracted
field. Moreover, this observation, regarding the recovery effect of the diffracted part of the
response, is especially evident in the low frequency regime, where intuitively it should take
place at shorter distances from the crack . Theoretically, at t = co the main front should be
fully recovered whereas the reflected wave should have completely vanished, also as a result
of the diffracted component.

The same set of analyses were conducted for the case of incident cylindrical waves. The
comparison in terms of snapshots of the propagation patterns computed with both methods
are displayed in fig. 6 for the same domains used in the case of plane wave incidence. The
sources for the cylindrical waves were located at the positions (zs,ys) = (—2.0,0.3) and
(xs,ys) = (—1.0,0.3) in order to introduce asymmetric conditions in the problem. Like in
the case of incident plane waves, at high frequencies it is observed how the diffracted field
exhibits negligible values once it reaches the opposite tip of the crack yielding good results
with only 3 orders of diffraction considered in the series. Similarly, the results also reveal the
property of the diffracted field of restoring continuity of the solution over the shadow zone.

12
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Figure 5: Snapshots of the propagation patterns for a single crack under an incident plane wave in
the form of a Ricker pulse obtained with the current SBD method (left) and the BEM algorithm
(right). The first two rows correspond to a characteristic dimensionless frequency of the pulse
n. = 0.5 for incident angles of 6, = 90° and 6, = 120° while the last two rows correspond to a
characteristic dimensionless frequency of the pulse . = 5.0 and the incidence angles of 6, = 90°
and 0, = 120°.
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Figure 6: Snapshots of the propagation patterns for a single crack under an incident cylindrical
wave in the form of a Ricker pulse obtained with the current SBD method (left) and the BEM
algorithm (right). At the low frequency regime the pulse is characterized by its central frequency
n. = 0.5, a total time window of t;;, = 13.0s and initial time ¢;,;, = 2.0s. The sources were
located at (zs,ys) = (—2.0,0.3) (first row). At the high frequency regime the pulse had a central
frequency 1. = 5.0 a total time window t,,;, = 4.2s and initial time ¢;,; = 0.2s with source located
at (zs,ys) = (—1.0,0.3) (second row).

Figure 7 shows synthetic seismograms for receivers located in the shadowed surface of the
crack computed with the SBD and the BEM algorithm for different orders of diffraction. The
results from the SBD technique and the numerical solution have been superimposed. It is
observed that the SBD method predicts results in good agreement with the numerical solution
for even when the considered diffraction is of second order. In fact, the small differences
between the solutions derived with both methods are due to the small artificial thickness
that must be introduced in the BEM mesh. In the SBD technique the crack is represented
like a zero-thickness internal surface. The same response is observed from the synthetic
seismograms and time histories displayed in fig. 8.
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Figure 7: Synthetic seismograms for receivers over the shadowed crack surface for an incident plane
wave in the form of a Ricker pulse with high and low central frequencies obtained with the SBD
technique (dashed lines) and the BEM algorithm (continuous line). The results in rows 1 and 2
are for a pulse defined by n. = 0.5, t;s = 13.0s, t;,; = 7.0s and those in rows 3 and 4 are for a

pulse defined by 7. = 5.0, t;,; = 4.2s, t;,; = 1.7s. The results were obtained with first and second
order diffraction terms.
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Figure 8: Synthetic seismograms for receivers over the shadowed crack surface for a incident
cylindrical wave in the form of a Ricker pulse with high and low central frequencies obtained with
the SBD technique (dashed lines) and the BEM algorithm (continuous line). The results in rows
1 and 2 are for a pulse defined by 7. = 0.5, t;,s = 13.0s, t;,; = 7.0s and those in rows 3 and 4 are
for a pulse defined by n. = 5.0, t;o = 4.2s, t;; = 1.7s. The results were obtained with first and
second order diffraction terms and the source was located at (xs,ys) = (—1.0,0.3). The results
were obtained with first and second order diffraction terms.
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As an additional validation we compare in fig. 9 our results with those reported by Sanchez-
Sesma & Iturraran-Viveros (2001). These authors showed how their solution method, which is
based on the solution by Sommerfeld (1896), loses accuracy in the low frequency regime due to
the plane wave approximation used for the higher order diffracted waves. In order to test the
level of error introduced by that plane wave assumption, these authors compared their results
with those obtained from the recursive application of the solution for a generalized wedge
formulated in MacDonald (1902). Here we compare our results with those from Sanchez-
Sesma & Iturrardn-Viveros (2001). In the plot we used the same notation as in Sdnchez-Sesma
& Iturraran-Viveros (2001) where r represents the radial coordinate of any point along the
illuminated zone of the crack and rg is the location of a source point in the shadow zone of
the crack, i.e., rg = a. In the plot we describe the behaviour of the amplitude of the transfer
function for a diffracted wave travelling along the illuminated zone produced by a plane or
cylindrical wave travelling along the shadow zone. The comparison corresponds to 4 different
frequencies, namely &r, = w/2, 7,2, 3w. The good agreement between the results from the
SBD technique and the solution from Sanchez-Sesma & Iturraran-Viveros (2001), at high
and low frequency values is clearly observed. Note that at low frequencies, our SBD solution
diffracted waves assumed like plane fronts coincides with the results from Sanchez-Sesma &
Iturraran-Viveros (2001), but departs from our solution with diffracted cylindrical waves.
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Figure 9: Comparison between the results from the SBD technique and those obtained with the
solution from MacDonald (1902) using cylindrical diffracted waves.

4 Conclusions

A series solution to the scattering of plane and cylindrical horizontally polarized SH shear
waves incident against a crack of finite length embedded in a full-space was constructed. The
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solution was obtained using the superposition of incident, reflected and diffracted rays. This
last term in the total field was calculated using the canonical solution for the diffraction of
electromagnetic waves by the tip of an infinite wedge due to Kouyoumjian & Pathak (1974)
and its generalized form by Jaramillo et al. (2013). The complete diffracted field for the finite
crack, was built through the superposition of two opposite infinite wedges. The solution is
shown to be general enough as it is valid for plane waves incident from arbitrary angles and
for cylindrical waves with sources at arbitrary locations. On the other hand, in the proposed
solution, the waves diffracted by the tips of the crack are propagated against the opposite
tip as cylindrical fronts yielding an accurate solution at the low and high frequency regime.
In contrast to alternative solutions represented as series of infinite terms, where accuracy
is treated in terms of the convergence of the series, in our method accuracy is related to
physically based diffraction sources in terms of higher order diffraction contributions. As
such it is controlled on a physical basis with the number of required terms shown to depend
on the frequency content of the incident wave. At high frequencies only a small number of
terms is needed since the amplitude of the diffracted waves dies off with distance reaching a
vanishing value as it interacts with the opposite corner. Also, since in the shown solution the
incident and reflected rays are represented in closed-form, as opposite to solutions based on
separation of variables where the whole field is represented by the infinite series, the solution
can be constructed to a desired accuracy with only the consideration of a few terms. Moreover,
we propose an empirical rule to obtained the number of terms required to obtain a solution
within a specific tolerance depending on the dimensionless frequency. On the other hand, for
the particular case of normal incidence, the solution is reduced to a single expression which is
found after taking advantage of the symmetry of the problem. Due to the low computational
cost involved in the evaluation of the different terms from the series and to their physical
nature, this solution is very appealing for use in the validation of numerical implementations
and to study propagation of waves in fractured media. Finally, a comparison between the
results for plane wave incidence and those for a cylindrical wave reveal that the diffracted
field in the shadow zone is independent of the type of incident wave.
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