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RESUMEN: Este artículo presenta un modelo computacional para la simulación de telas hiperelásticas. El modelo 
propuesto tiene un enfoque multi−partículas y simula la interacción de un material textil con un objeto deformante. 
La tela está  representada por mallas rectangulares compuestas por resortes, este hecho permite al modelo 
comportarse ortotrópicamente y en consecuencia es posible simular sus propiedades en ambos sentidos. Las 
relaciones constitutivas del material preservan las capacidades hiperelásticas naturales de la tela. En el modelo 
desarrollado aquí, inicialmente la tela se encuentra en su estado natural no deformado. Luego se le da una 
deformación inicial que garantice el no contacto o intersección con el objeto deformante. Finalmente, la tela 
deformada es liberada, en consecuencia ella comienza a moverse iterativamente hacia a una posición de equilibrio. 
La posición final de equilibrio es alcanzada cuando las fuerzas internas son balanceadas por las fuerzas externas de 
contacto causadas por el objeto. Esto se logra cuando el criterio de parada ha sido satisfecho. 
 
PALABRAS CLAVE: Material hiperelástico, Modelo multi− partículas, Comportamiento no lineal. 
 
ABSTRACT: This article presents a computational model to simulate the deformation of hyperelastic fabrics.  The 
model is based on a spring−particle approach and it simulates the interaction of a textile tissue with a forming body. 
The fabric is represented by rectangular meshes of springs. This fact enables the model to behave orthotropically and 
therefore it is possible to simulate the warp and weft properties. The constitutive relations preserve the natural 
hyperelastic capabilities of the cloth. In the model developed herein, initially the cloth lies in its relaxed 
un−deformed state. Then it is given an initial deformation that guarantees no contact nor intersection with the 
forming rigid body. Finally, the deformed cloth is realised, and moves iteratively towards an equilibrium location. 
The final equilibrium location is reached when the internal forces are balanced by the external contact forces caused 
by the rigid object. This is achieved when the stop criterion has been satisfied. 
 

KEY WORDS:  Hyperelastic material, Spring−particle model, Non–linear behavior. 
 
1. INTRODUCTION 

 
Hyperelasticity is the capability of a material to 
experience large elastic strain due to small forces 
without losing its original properties [8]. A 
hyperelastic material has non−linear behavior,  

 
which means that it does not deform in a linear 
relationship with the applied stress. Several 
woven fabrics like Lycra® and Nylon® have 
hyperelastic behavior and are widely employed 
by textile companies. 
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Existing cloth simulation models are, in most 
cases, good enough for visualization purposes 
and usually aim to model the drape of fabric 
materials where rotational (bending) deformation 
is large and membrane deformation is very low. 
This study uses multi−particle methods and is 
intended to simulate fabrics under stretching 
conditions. This situation is typical of garments 
such as underwear and T−shirts which are 
usually made of materials such as spandex or 
Lycra®. In these garments, the stretch forces are 
very large compared to the weight of the cloth or 
the bending forces. 
 
2. LITERATURE REVIEW 

 

Breen, House, and Wozny [4] defined a fabric as 
a complex mechanical mechanism composed of 
woven threads  into an interlocking network. The 
geometric relations where the threads of the 
mechanism (fabric) cross each other are the basis 
of Peirce’s model [18]. Peirce is considered a 
pioneer in cloth modeling [5]. The fact that 
Peirce’s model is inherently geometric makes it 
applicable to limited problems. In 1954, Love 
[14] found a graphical solution to the non−linear 
equations proposed by Peirce. Four years later 
Kemp [12] modified the equations proposed by 
Peirce assuming yarn cross sections as elliptical 
instead of circular, achieving better results. The 
first three−dimensional Peirce−like model was 
proposed by Kawabata, Niwa, and Kawai [11]. 
This model uses experimental data obtained 
from laboratory tests.  
 
Another area explored in cloth modeling has 
been the application of the theory of elasticity. 
Some authors like Kilby [13] proposed a model 
with rectilinear elements joined at the 
intersecting points of the fabric. The behavior of 
every element was based on the theory of 
elasticity for small displacements. Via linear 
stress−strain relationships, this theory deals with 
the problem of finding the final state of a body 
due to the application of external forces. 
However, cloth modeling requires expressions 
which are inherently non−linear. That is the 
reason why in 1996 Ascough, Bez, and Bricis [1] 
took the non−linear concept and developed a 
new approach based on Kilby’s model. This 
model is composed of a mesh of simple beam 

elements with non−linear behavior. In general, 
when attempting to solve these kind of equations, 
iterative algorithms are used where the stiffness 
matrix of the system is updated at each iteration.  
In reference [15], Malvern states the basic 
concepts of the theory of elasticity for large 
displacements. Based on those concepts, Bathe 
[2] and Crisfield [6] introduce the Finite Element 
Method applied to problems where large 
displacements, large rotations and large strains 
are required, which are the usual requirements in 
cloth modelling. 
 
Due to the limitations of the classical theory of 
elasticity some authors like Mooney [16] and 
Ogden [17], proposed a new method based on a 
strain energy function that defines a material 
which experiences large deformations (cloth, 
woven fabrics, hyperelastic materials, etc). This 
function is minimized to achieve a final 
equilibrium state. Usually the strain energy 
function has three main components: i) tension, 
ii) bending, and iii) shearing. 
  
Spring−force formulations appeared in 1988 
with the Haumann and Parent model [10], and to 
this date numerous spring−force models have 
been published. In these types of models the 
interactions between the intersection points of 
the fabric are not modeled using elastic 
properties. Instead these interactions are 
described by spring forces. Gudukbay, Ozguc, 
and Tokad [9] worked with these types of 
models and obtained accurate visual results. In 
1995 Provot [19] described a model with three 
different kinds of springs: i) a structural tension 
spring, ii) a shear spring, and iii) a flexion spring. 
If dynamic variables are added to the springs, 
then it is possible to simulate cloth movement 
[5]. This type of model seeks for a final position 
via an iterative algorithm which searches for the 
equilibrium of external and internal forces. In 
1994 Breen, House, and Wozny [4] proposed a 
similar model, but instead of springs the 
interactions among particles are described via 
energy functions.  
 
Most cloth models avoid the frictional forces 
which are present in the interaction between a 
fabric and an object. This fact has been 
considered by Yamamoto and Imaoka [22] to 
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obtain more accurate results. Their model takes 
into consideration that the final shape of the 
fabric depends on the frictional coefficient as 
well as the location of the rigid object and the 
history of changing locations.  
 
The model proposed in this article is a 
spring−force formulation. It is developed for 
fabrics which behave hyperelastically, and 
elongation is the prevalent source of deformation. 
These situations are typically found in the 
manufacturing process, thermoforming of fabrics, 
or when wearing garments that wrap around the 
body.  
 
3. THE NON−LINEAR PURE−TENSION 

SPRING−ELASTIC MODEL 

 
In multi−particle methods, balance of forces at 
each particle leads to the following equation  

,rseamsexternalbendshearstretch FFFFFFW =+++++     (1) 

where Fr is the resulting force at the particle, W 
is the gravity load over a particle, and Fseams is 
the sewing force [7]. 
 
Consider a rectangular piece of woven fabric to 
be partitioned into an array of points named 
nodes, numbered from left to right and from 
bottom to top as shown in Figure 1 and stored in 
matrix N of dimension n x m. Beside the point 
location, every node Ni,j has information about 
the springs connected to the nodes, its movement 
restriction, and information about how the node 
is in contact with the surface of a forming rigid 
object.  

 
Figure 1:  Numbering nodes and springs on the grid. 

The links between nodes are represented by 
spring forces Sk, which are 3–D vectors Sk∈  R3. 
Those vectors are numbered consecutively from 
left to right and from bottom to top as shown in 
Figure 1 and stored in a vector F of dimension 
1xα. F = [S1 , S2 , … , Sk , … , Sα], where α is the 
total number of springs within the grid. The 
overall system with nodes and springs is referred 
to as a grid in this study. 
 
3.1 Methodology 

 
Initially the grid lies on a plane π and the springs 
are at equilibrium due to the absence of external 
forces. Constraints are defined (or applied) to a 
set of nodes in the grid. Then, the grid is given 
an initial deformation. This deformation should 
guarantee no contact or intersection with the 
forming rigid body, see Figure 2. Next, the grid 
is realised, and it begins to move seeking for an 
equilibrium location where the forces at the 
nodes are balanced. Each spring of the grid 
produces a force Sk which is a function of the 
stress σ, and the associated area Ak as shown in 
Figure 3. Furthermore, the orientation of a spring 
force Sk is given by a unitary vector Φ, that can 
be calculated from the coordinates of the nodes 
which connect the spring k in the grid. 

 
Figure 2:  Deformed grid and the rigid object. 

Figure 3:  Areas associated to the springs. 

Every node Ni,j of the grid experiences a set of 
forces caused by the surrounding springs. The 
possible configurations for a node are shown in 
Figure 4.  
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Figure 4:  Possible configurations of the interactions 

between springs. Two, three and four springs 
configurations. 

 
Any configuration of springs from Figure 4 is 
joined at a node Ni,j, which has been referred to 
as a join node. The rest of them have been 
named as opposite nodes Ni,j*. Hence Φ is given 
by 

*
,,

*
,,

jiji

jiji

NN

NN

−

−
=Φ .                      (2) 

To represent the stretch and warp properties of 
the fabric, the grid has different material 
properties along the x and y axes. These are 
represented by a stress–strain non–linear 
function σ(ε), σ:R→R. This non–linear 
stress−strain function σ(ε) is obtained from a 
laboratory test and is approximated by a 
piecewise linear function as shown in Figure 5.  
The grid movement is an iterative process. The 
coordinates of the every node Ni,j  at iteration t 
are updated according to the rules of node 
movement exposed in Section 3.2 until a local 
equilibrium is achieved, producing a new state at 
iteration t + 1. Also, an evaluation of the contact 
of the Ni,j node with the rigid object is 
undertaken from iteration t to iteration t + 1. 

 
Figure 5:  Approximation of the original non−linear 

function into a piecewise linear function. 

 

3.2 Node Movement 

Once the initial grid is deformed, every node Ni,j 
experiences a resultant force Ri,j∈  R3. Force Ri,j 
pushes node Ni,j towards a local equilibrium 
position, and it is given by the summatory of all 
the forces Sk which surround node Ni,j, that is 

∑=
)(

, .
aroundk

kji SR                       (3) 

The procedure to move a node Ni,j to its local 
equilibrium position consists of moving the node 
in the direction of Ri,j by a small amount, then 
reassess Ri,j  and move the node Ni,j until the 
magnitude of the resultant force becomes zero 
(║Ri,j║ = 0). The amount of movement in the Ri,j 
direction is defined by the step size ξ, which is a 
scalar value. Hence, selecting an appropriate 
value for ξ that guarantees a relaxation  of the 
system (║Ri,j ║→ 0) becomes a main task on the 
model.  
 
The criteria chosen to compute the ξ−value is an 
average of the deformations of each spring 
which surrounds node Ni,j. Initially, the 
deformation d of a spring k is defined as the 
difference between the stretched length lst of 
spring k and its unstretched length lun, then  

unst

k lld −= . 

Once dk has been computed, the step size ξ for 
node Ni,j at iteration t is defined as 

C

d
aroundk

k

ji

∑
=

)(
,ξ ,                     (4) 

where C is a constant defined by the user. At 
every iteration the grid gets closer to its final 
equilibrium position, and for that reason the 
value of ξ also needs to be adequate to guarantee 
convergence. Depending on the value of ξ, the 
grid instead of being relaxed could be taken 
away from the equilibrium state. Therefore, the 
algorithm evaluates at every iteration if the step 
size ξi,j  calculated by Equation (4) is appropriate 
to relax node Ni,j, that is ║Ri,j ║→ 0. Otherwise, 
ξ has to be recalculated and reevaluated 
iteratively until a suitable value is obtained.  It 
means that if the ξ−value initially calculated is 
inappropriate, then ξ will be consecutively 
divided by C until the step size becomes good 
enough for the relaxing purposes. Thus the value 
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of C depends on how much the user wants to 
effect the step size at each iteration.   
 
The new location of node Ni,j generated by force 
Ri,j is given by  

.)(,)(
,

)(
,)(

,
)1(

,
t

jit

ji

t

jit

ji

t

ji
R

R
NN ξ+=+         (5) 

Depending on the constraints imposed by the 
rigid body, the movement of Ni,j can be classified 
as: (i) free, (ii) restricted by the surface of the 
rigid object, and (iii) constrained by the initial 
boundary conditions. 
 
3.2.1 Free Movement 

Nodes involved in this type of movement do not 
have any restriction. They are not in contact with 
a rigid object, neither are they constrained by the 
boundary conditions. They can move freely in 
the 3–D space in the direction of vector Ri,j (see 
Figure 6). 

 
Figure 6:  Free Movement. 

 
At iteration t a specific node Ni,j can move freely, 
but at iteration t + 1 it could be restricted by the 
surface of the rigid object.  
 
3.2.2 Movement Restricted by the Surface of 

the Rigid Object 

The spring−elastic model being studied takes 
into account tension (internal forces) between 
the particles of the fabric. These forces are 
balanced by the external forces applied due to 
contact with rigid object. Due to the nature of the 
simulation, bending and shear do not play an 
important role. Furthermore friction between the 
woven fabric and the surface is out of the scope 
of this study. 
 
If at iteration t a node Ni,j is in contact with the 
surface of the rigid object, it can experience two 

kinds of movement depending on the direction 
of the resultant force Ri,j.  When the resultant 
force at a node Ni,j over the surface points 
towards the outside of the object, that is n · Ri,j > 
0, then the node moves in the direction of Ri,j and 
is free of contact with the surface (see Figure 7a).  

 
a) Ri,j  is pointing out the object  b) Ri,j  is pointing 

inside the object 
Figure 7:  Movement restricted by the surface of a 

rigid object. 
 
On the contrary, when the resultant force Ri,j  
points towards the inside of the forming rigid 
object, that is n · Ri,j < 0, then node Ni,j  moves 
over the surface (see Figure 7b).  

 
Figure 8: Movement over the surface. The force 

vector Ri,j over a node Ni,j in contact  
with the surface is projected over a tangent plane to 

obtain Ri,j
* .  

 
The node Ni,j whose movement is over the 
surface, gets its local equilibrium when the 
component Ri,j*  of the vector Ri,j over the tangent 
plane to the surface at the contact point is zero. 
The node is moved in the direction of the 
component Ri,j* until this condition is achieved. 
When this occurs, the position of the node Ni,j in 
the tangent plane is projected over the surface to 
get the final location of the node (see Figure 8). 
 
3.2.3 Constrained Movement 

The movement in the x, y, and z axes of some 
specific nodes can be constrained. Any node 
movement can be restricted in one or more axis. 
When a node Ni,j is constrained, Equation (5) 
only takes into account movement along the 
non–restricted axis.  
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3.3 Convergence Criterion e 

 
Let V∈  Rs be a vector of dimension s = n x m, 
with the total number of nodes in the grid. If k is 
a number that maps the indexes of a node Ni,j, as 
(i − 1)n + j, then V is defined as  

jik RV ,=  if Ni,j is a non−contact node 

*
, jik RV =          if Ni,j is a contact node, 

that is, Vk contains the magnitude of the resultant 
force Ri,j in the nodes at iteration t. If node Ni,j is 
in contact with the rigid body then Vk contains 
the magnitude of the projection over the surface 
Ri,j
*  instead.  

 
The grid will be in theoretical equilibrium when 
V = 0. Then, the convergence criteria can be 
defined as  

eV ≤
∞

.                (6) 

The infinity−norm of vector V is less or equal 
than e ∈  R. 
 
4. EXPERIMENTS AND RESULTS 

 
This section presents two application examples 
of the spring–particle model for hyperelastic 
cloth. The first one consists of a simulation of 
contact between a fabric and a non-convex 
forming mold. The second one simulates the 
contact between a fabric and a woman’s torso. 
 
To perform the simulation properly, it is 
necessary to provide the spring-particle model 
with the following: i) the geometry of the rigid 
forming object, ii) the dimensions of the textile, 
as well as the number of divisions for each side 
of the rectangle, iii) the warp and weft properties, 
iv) the constrained nodes, and v) an initial 
deformation which guarantees no contact or 
intersection with the forming rigid body.         
 
The geometry format consists of a list of points 
Pi = (ni,xi,yi,zi), where ni is the index number for 
point Pi;  followed by a list of triangles tj = 
(n1,n2,n3)j, where n1, n2 and n3 are the  indexes of 
the points which conform triangle j. The 
constitutive material properties in the warp and 
weft directions of the fabric are described by a 

piecewise linear function. That is, a list of points 
Mp = (σp,εp) which describe the function. 
 
In the first example a non-convex 3-D 
thermoforming mold was employed as the 
forming object (see figure 9). This geometry was 
generated in CAD software and exported into a 
text file with the format required by the model. 
The fabric used was 10cm long by 10cm wide 
and 40 divisions were taken on each side. The 
material was considered isotropic; hence warp 
and weft properties were the same. Those 
properties were obtained via experimental tests 
developed at EAFIT University and ICIPC 
Institute [21]. All the nodes in the perimeter of 
the fabric were constrained in the x, y, and z axes. 
The nodes which do not belong to the perimeter 
were moved in the z direction up to a location 
where no contact with the non-convex object 
was guaranteed. Figure 9 shows the initial and 
the final state of the interaction of a fabric with 
the thermoforming mold.   

 
a) Initial state 

 
b) Final state 

Figure 9:  Interaction between a thermoforming mold 
and a woven fabric. 

 
The stop criterion was satisfied after 360 
iterations, see figure 10. The value for the stop 
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criterion was e = 2.4e-2 Newtons (N).  The 
simulation results show that the fabric wraps 
over the contact area of the forming object 
according to what is usually seen in real 
situations. No experimental data was found in 
the literature in order to validate this simulation. 
Therefore, further research in this direction must 
be accomplished.  At the first 50 iterations the 
stop criterion has values between 10N and 8N. 
Those values correspond to some springs that are 
too stretched to achieve the initial state location 
of the fabric, see figure 9a. Those springs are 
rapidly relaxed by the model. Therefore, after 
iteration 50 all the springs within the grid begin 
with and slower relaxation process until the stop 
criterion is achieved, see figure 10.    

 
Figure 10: graph of the convergence criterion 

(Newton) vs. number of iterations 
 
In the second simulation, a woman’s torso was 
digitalized. Then, a surface which approximates 
the cloud of points obtained in the digitalization 
process was generated. The fabric used for the 
simulation was 50cm long by 20cm wide. 40 
divisions were taken on its long side and 10 
divisions on its wide side. The material was also 
considered isotropic with the same properties 
used in the previous example. All the nodes 
belonging to the perimeter wide side of the 
fabric were constrained on the x and y axes, see 
figure 11a. Therefore constrained nodes where 
allowed to move along z axis. Initially, the fabric 
was deformed to surround the torso’s surface 
without touching it. As the location of the fabric 
generated is a non−equilibrium state, it will 
deform until the resulting forces at the nodes are 
minimized.  

 

 
Figure 11:  Interaction between woman’s torso and a 

woven fabric. 
 
The simulation stopped after 300 iterations. The 
value for the stop criterion was e = 1e-4 N. 
 
5. CONCLUSIONS 

 
A spring–particle formulation to model 
hyperelastic fabrics is proposed. Simulation of 
the interaction between a non–linear material and 
a rigid object is achieved. The model is 
composed of rectangular meshes of springs 
which represent the fabric. This fact enables the 
model to behave orthotropically. Taking 
advantage of this capability it is possible to 
simulate the warp and weft properties of the 
fabric.  
 
The material behavior of the fabric is described 
by constitutive equations which have 
hyperelastic capabilities. This non–linear 
stress−strain relationship is obtained from a 
laboratory test and is approximated by a 
piecewise linear function.  
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The rigid object is represented by a full 
boundary representation geometry (Full B−Rep) 
composed of triangles. The Full B−Rep 
geometry is gotten from any CAD software 
which has the capabilities of exporting in VRML 
or VTK formats.  
  
The deformation model is based on an iterative 
procedure which seeks for an equilibrium 
location of the grid which represents the fabric 
(cloth). The final equilibrium position is 
achieved when the internal forces are balanced 
by the external contact forces caused by the rigid 
object. This is gotten by relaxing every node 
locally within the grid at each iteration. As a 
result of these local relaxations a global relaxed 
state for the whole grid is reached after the 
convergence criterion has been obtained.  
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