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Abstract 

This paper proposes risk measures for bank solvency by accurately measuring the solvency risk 
components. These measures consider the minimum regulatory solvency levels and banks’ risk appetite 
level and risk profile. For this purpose, we used semi-nonparametric statistics to model stylized facts of the 
risk distribution, particularly the high-order moments of the Solvency Decline Rate, the Tier Decline Rate, 
and the Portfolio Growth Rate variables. Additionally, these risk measures can be used to measure the risk 
of regulatory intervention and to define policies that establish the minimum solvency levels required by 
banking regulators by estimating the Quantile Risk Metrics. As a case study, we collected data on the 
solvency indicators of the Colombian banking system, which adapts to the standards established by the 
Basel Committee. According to the results, the liquidity injection measures implemented in response to the 
needs generated by the COVID-19 pandemic led to an increase in the levels of the risk portfolio in the 
Colombian banking system, which exceeded the 99th percentile of the probability distribution of monthly 
portfolio value changes. 
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1. Introduction 

With more than 25 million confirmed cases and over 800,000 deaths around the world as of August 2020, 
the COVID-19 pandemic was not only a global tragedy, but also raised fears of an imminent recession and 
economic crisis (Nicola et al., 2020). As a response, most central banks injected liquidity into their 
economies to recover economic stability, ensuring an adequate supply of credit for households and 
businesses and preventing banks and taxpayers from being forced to draw on their reserves and savings 
(Balthazar, 2006). This intervention, however, implied higher financial and reputational risks for banks, as 
it increased (reduced) their level of leverage (solvency), and unsustainable debt amounts − International 
Monetary Fund, IMF (2020). In light of this situation, banking regulators in Europe had to relax the capital 
and liquidity requirements levels, as described by Agnès & Mauro (2020), and thus solvency positions in 
the insurance industry could quickly become complicated, as asserted by an article published by KPMG 
(2020). This scenario raises different uncertainties that should be faced in the near future, particularly for 
the banking industry: Will solvency ratios plunge to the point that some companies would require 
regulatory actions? What will be the impact of these decreases? How will the decline in the equity ratios 
affect rating agencies' opinions at the company and industry levels? 

At the international level, the Basel committee has established a regulatory and supervisory framework for 
banking financial risks by publishing in 1988 the Basel I agreement in which the Capital Adequacy is 
established as the main element to cover the materialization of losses that destabilize a bank and the 
financial system −Banking Regulations & Supervisory Practices (Basel, 1988). The indicator used to 
measure capital adequacy is the Solvency Ratio (SR), which is calculated by dividing Tier Capital by Risk-
Weighted Assets (RWAs) and should not be below a certain value set by regulators.4 The main objective of 
the Basel I agreement was to strengthen the stability of the international banking system while not creating 
competitive inequalities among international banks. 

This objective leads to SR being calculated using standard methods that employ arbitrary models and 
parameters. Although the measurement of the bank's risk portfolio is imprecise, it is simple and is presumed 
to comply with not creating competitive inequalities (Banking Supervision, 1998). However, the 
implementation of this agreement revealed its weaknesses and the need to incorporate measurement 
models that are more sensitive to variations in the risks associated with banking assets.  Therefore, in 2004, 
a new agreement, known as Basel II, was released. It was founded on three pillars (capital requirements, 
risk management and supervision, and market discipline) and sought to improve risk measurements. The 
first pillar entails SR to be measured in a standard manner so that different agents can be compared and 
aggregated. The second pillar seeks that banks develop more precise risk management techniques that 
consider the relationship of these risks with banks’ risk profile and environment. This pillar, in turn, 
requires banks to measure their capital requirements using regulatory models and rigorous models to 
calculate Economic Capital (EC).5 The third pillar is associated with market discipline and complements the 
other two pillars by allowing market players to assess the bank’s capital adequacy. Nonetheless, this 
agreement was insufficient to protect the banking system from the 2008 crisis, which revealed the need to 
re-evaluate policies, business models, and financial risk management systems (Borio, 2008). Authors such 
as Connolly (2009), Ng & Roychowdhury (2010), Rötheli (2010), Fahlenbrach et al. (2012), Huang et al. 
(2012) and, Macey (2017) have studied the causes of the 2008 crisis regarding deficiencies in bank risk 
management, notably failures in regulation, banks’ bounded rationality, and risk misperception. Based on 

 
4 This value is different for the Tier 1 capital and the total capital ratio. According to the Basel I and Basel II agreements, the 
minimum value for the total capital ratio is 8%, i.e. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
≥ 8% 

5 EC and RC are terms used in the framework for bank capital regulation proposed by the Basel II Committee. Elizalde & Repullo 
(2004), Tiesset & Troussard (2005) define the RC as the minimum capital required by the regulator, and the EC is defined as the 
level of capital required to cover the bank’s losses (due to risk materialization) with a certain probability (or confidence level) for 
a given horizon. 



 

the lessons learned from this crisis, the Basel Committee implemented the Basel III agreement This 
agreement includes amendments mainly focused on ensuring financial intermediaries’ capital and liquidity 
adequacy to absorb economic and financial shocks and avoid contagion effects in the real economy. The 
capital of financial institutions must be able to absorb the losses generated by the materialization of credit, 
market, liquidity, and operational risks. 

Balthazar (2006) stresses the importance of pillar 2 in the evolution of the regulatory framework. It 
promotes EC, instead of Regulatory Capital (RC), as the capital necessary to cover the losses of a risk 
portfolio. The reason for this is that EC is calculated using internal models, adapts to the risk profile of each 
bank, and considers their risk appetite, as it is based on Quantile Risk Metrics (QRMs). To calculate QRMs 
−see Section 3− excess skewness and kurtosis must be considered a characteristic, commonly described in 
the financial literature, of the banks’ risk portfolio components so that risks are not underestimated. 
Furthermore, the financial mechanisms used to inject capital to cover the liquidity needs of the different 
economic agents, e.g. the way in which the banking system is used to provide liquidity through the granting 
of credit, is another source affecting banking stability, which must, therefore, be regulated. Both 
international financial regulations and the work carried out by researchers in the field of banking risks point 
to the need to define regulatory restrictions on the banking system in terms of EC using accurate risk 
measures that reflect the real vulnerability of banks. These restrictions should be established based on the 
probability distribution of variations in the bank’s risk portfolio and the capital supporting it, since these 
parameters reflect its risk profile. In addition, they should consider stylized facts of its probability density 
function (pdf), including asymmetry and excess kurtosis observed in the sample data, and its risk appetite 
by setting 1 − 𝛼𝛼 probabilistic confidence level that EC should cover. The purpose is to facilitate the adequate 
application of monetary interventions to prevent economic crises triggered by COVID-19. This, in turn, 
would prevent these interventions from having negative impacts on the stability of the financial system 
when used as a vehicle to implement intervention measures.  

This study contributes to the existing literature by proposing a methodology to measure solvency risk and 
establish EC through policies that consider each bank’s risk profile and appetite. As a starting point, the pdf 
of the variations in the SR, the risk portfolio, and the capital supporting such portfolio is calculated using 
semi-nonparametric (SNP) techniques based on Gram-Charlier (GC) expansions. The SNP distribution allows 
capturing stylized facts in the tails of the probability distribution, such as skewness, leptokurtosis, and 
others as the multimodality in extreme values of the distribution, which is not possible under the 
assumption of normality and other typical parametric specifications. The methodology proposed in this 
study can be applied at all levels of aggregation of the risk portfolio and the capital supporting it. It can also 
be used for more straightforward or more complex models. If the components of creditworthiness are 
disaggregated, multivariate approaches can provide important information regarding the dynamics of the 
correlations between these components, which can be used for the optimal allocation of resources to the 
bank’s risk portfolio, considering regulatory constraints. 

An application of this methodology is presented with data from the following variables: Solvency Decline 
Ratio (SDR), which is calculated as the first logarithmic difference of SR; Portfolio Growth Rate (PGR), which 
is calculated as the first logarithmic difference of the value of the risk portfolio; and Tier Decline Rate (TDR), 
which is calculated as the first logarithmic difference of the value of the Tier capital supporting the risk 
portfolio. Additionally, these risk measures can be used to measure the risk of regulatory intervention and 
to define policies that establish the minimum solvency levels required by banking regulators by estimating 
the QRMs. As a case study, we collected data on the solvency indicators of the Colombian banking system, 
which adapts to the standards established by the Basel Committee. Regarding the findings, the frequency 
distributions of SDR and its components (TDR and PGR) were found to have time-varying patterns 
components in the mean and variance, which can be captured using ARMA and GARCH models, respectively. 
Concerning the higher moments of the probability distributions, we observed that the frequency 
distributions of the variables under analysis are leptokurtic. The PGR has a marked skewness to the right. 
After modeling the pdf of the PGR, the shock suffered by the increase in the risk portfolio in March 2020 was 



 

found to exceed the 99th percentile under GC and normal distribution. In addition, this shock increased the 
probability of regulatory intervention for April 2020. 

The rest of this paper is structured as follows. Section 2 analyzes the components of the SR to understand 
the behavior of the different sources affecting banks’ risk portfolio and the capital allocated to cover their 
portfolio risk. Section 3 proposes risk measures on bank solvency and the models to estimate them. Section 
4 describes the data set used as the case study; in addition, the parameters for this data set are estimated 
in this section. Section 5 presents the empirical results and Section 6 draws the conclusions and provides 
some practical recommendations. 

2. Capital Adequacy Requirements (CARs) 

CARs include both regulatory and economic capital. In particular, Basel II aims to establish more risk-
sensitive minimum capital requirements so that regulatory capital is closer to a bank’s economic capital 
(Caruana, 2005).  According to the Basel Committee on Banking Supervision (1998), Tier regulatory is 
divided into two components: Tier 1, which refers to core capital that includes equity capital and disclosed 
reserves; and Tier 2, which refers to supplementary capital that includes revaluation reserves, general 
provisions, hybrid capital instruments, and subordinated debt. RC and EC requirements are determined as 
a function of the portfolio risk. As a matter of fact, accurately calculating portfolio risks is not easy from a 
modeling and computational point of view (Wason et al., 2004). One can measure the risk of each module 
that composes the risk portfolio and aggregate these modules at different levels by dividing each main risk 
module into risk submodules. A higher degree of unbundling indicates a more accurate but less simple 
measurement (Sandström, 2007). Assuming a multivariate normal distribution and a linear correlation 
between the risk modules for aggregation, the solvency capital requirement to cover the portfolio can be 
estimated as the 𝛼𝛼 percentile. This method coincides, as described by Wason et al. (2004), with that used 
under the Solvency II guidelines of the European Union law where the solvency capital requirement must 
be sufficient to survive extreme losses over a one-year horizon with a minimum confidence level of 99.5%. 
The solvency capital requirement incorporates insurance, market, credit, operational, and counterparty 
risks and must be recalculated at least once a year. From the regulatory point of view of the Basel 
Framework, the CAR establishes the proportion of RC required to support a certain amount of RWA, which 
determines the value of the risk portfolio made of credit risk, market risk, and operational risks as 
expressed in Eq. (1) 

𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖 .            (1) 

Under the standard method: each source of risk (i) is multiplied by a standardized factor (𝑤𝑤𝑖𝑖), which is 
expected to be set conservatively in each jurisdiction. In this weighted aggregation of the risk portfolio, 
correlations between assets are not considered, and relative weights (𝑤𝑤𝑖𝑖) are assigned as arbitrary 
constants. Basel’s Internal Models Approach allows banks to develop their internal estimates of risk 
components to determine the capital requirement for that position, subject to certain minimum 
requirements and disclosure obligations. In some cases, banks will have to use a supervisory value instead 
of an internal estimate for one or more risk components (Banking Supervision, 2004). The Internal Models 
Approach assumes that the loss distributions are close to the normal distribution and consider correlations 
between assets. For certain groups of assets, these correlations are defined in a regulatory manner.  The 
assumption of a normal distribution of the risk portfolio components in finance and insurance is an 
implausible condition due to the high frequency of outliers and asymmetry (Wason et al., 2004).  Balthazar 
(2006), for instance, highlights the presence of heavy tails to the right of the loss distribution. The solvency 
risk measurement of a bank’s portfolio depends on the risk measurement of each of the portfolio 
components, where determining the loss probability distribution is particularly important. In addition, it is 
common to find in the literature models that assume Gaussian distributions such as those proposed by 
Merton (1973; 1974); Vasicek (2002); Jiménez & Mencía (2009), Chava et al. (2011), Belkin et al. (1998), 
Frachot et al. (2001); and Shevchenko (2010), which, in most cases, underestimate the risks faced by not 



 

taking into account the frequency of occurrence of extreme events that cause distortions in probability 
distribution tails. Different studies have demonstrated that the assumption of normality is significantly 
different from the distributions observed in the variables related to banks’ financial risks. 

Regarding deviations from normality, Sandström (2007) analyzes the skewness of the probability 
distributions of the different components of a bank’s portfolio risk and the effect of not parameterizing it in 
some underlying distribution. This author proposes its parameterization using a Cornish–Fisher expansion 
and finds that if a normal multivariate risk distribution is assumed (without considering module skewness), 
the capital requirement can be well below the risk when skewness is omitted. Bølviken & Guillen (2017) 
argue that the accuracy of risk aggregation in solvency can be improved by recursively updating the 
skewness in the risk measurement of specific instruments.  Le Maistre & Planchet (2013) show that the 
standard approach used in the Basel Framework to assess interest rate risk leads to a biased risk 
measurement. In the contexts of operational risk measurement Dutta & Perry (2006); De Fontnouvelle et 
al. (2003); Feria-Domínguez et al. (2015) reveal that the loss distributions due to the materialization of 
operational risks exhibit skewness and heavy-tailed distributions. Kretzschmar et al. (2010); Bateni et al. 
(2014); Madan (2009); and Lynn Wirch & Hardy (1999) have studied probability distributions in the 
estimation of both aggregated and disaggregated solvency risks and reported that skewness and kurtosis 
do not correspond to the parameters of a normal distribution. In order to correct the distortions between 
the loss frequency distributions of the components of a bank’s risk portfolio and the normal distribution, 
recent studies have proposed using Gram–Charlier (GC) expansions. These expansions were introduced by 
Edgeworth (1896) and have been widely studied and applied to approximate the probability curves of 
random variables related to various scientific fields. Sargan (1975) first introduces this methodology in 
semi-nonparametric (SNP) econometrics to approximate the confidence intervals of t ratios and concludes 
that these intervals are more accurate than the usual asymptotic confidence intervals for large samples. 
After this, the use of GC expansions in econometrics has expanded to model random variables that present 
significant deviations from the normal distribution.  Jarrow & Rudd (1982); Lee (1984); Corrado & Su 
(1996); Mauleon & Perote (2000); Jondeau & Rockinger (2001) and Del Brio & Perote (2012) are examples 
of authors that have used GC expansions in econometrics. From a multivariate approach Del Brio et al. 
(2009) demonstrate how Pearson's correlation coefficients are different when estimated under the 
assumption of normality and when estimated under SNP approaches.  

In addition to the problems of asymmetry and excess kurtosis that arise when measuring financial portfolio 
risks, banking regulations can negatively impact solvency risk. Some studies have focused on evaluating RC 
as an indicator of a bank’s capital adequacy to cover the losses caused by the materialization of financial 
risks and found weaknesses in the measurement. Among the deficiencies of RC, regulatory arbitration 
stands out since it allows banks to take greater financial risks without increasing their capital levels, as 
pointed out by Jones (2000); Ward (2002); Houston et al. (2012); Karolyi & Taboada (2015); and Boyer & 
Kempf (2020). Kim & Santomero (1988) investigate the role of bank capital in risk control using a mean-
variance model and report that one of the drivers for banks to select high-risk portfolios is the role of bank 
capital regulation. In addition, they find that the mere use of RC is not enough and effective in limiting the 
risk of bank failure. Another problem raised by (Drumond, 2009) is that regulatory capital requirements 
have accentuated procyclicity in solvency risk. Other studies into CAR focus on analyzing the behavior of 
this indicator. For instance, Abou-El-Sood (2016) examines the relationship between the CAR required by 
regulators and bank failures and whether this relationship depends on the proximity of the CAR to the 
minimum required regulatory levels. 

3. Description of the risk measures and the estimation methodology 

The methodology is based on the need to provide accurate probability measures for the loss distribution 
determination to measure solvency risk. This measurement can be made at different levels of aggregation 
of the solvency risk components. The highest aggregation level corresponds to the SDR, a variable that 
groups all the components of the risk portfolio and the capital it supports. The loss distribution is 



 

established on the relative changes of SR per unit of time, which corresponds to SDR. At the first level of 
disaggregation, it is separated into two classes of components: The Tier capital components (corresponding 
to the numerator of SR) and the *RWA* risk portfolio components (corresponding to the denominator of 
SR). The loss distribution for each component is based on the relative changes of the capital and portfolio 
value over time corresponding to TDR and PGR, respectively. Higher levels of disaggregation on the risk 
portfolio allow the analysis of correlations between different risk modules and sub-modules, facilitating the 
rebalancing and optimization of the portfolio allocation, under capital constraints, given a minimum level 
of solvency. In this document only, an aggregated analysis of solvency risk is made on SDR, TDR, and PGR. 
For multivariate analysis of the risk portfolio, it is necessary to disaggregate the risk portfolio by sub-
modules. These measures make it is possible to determine regulatory intervention probabilities, which are 
defined as the likelihood that a bank’s solvency ratio is below a certain minimum solvency level (𝜂𝜂) 
established by the banking regulator. In addition, they enable setting policies based on Quantile Risk 
Measures (QRMs), which helps establish EC restrictions, considering the risk appetite and the stylized facts 
about the distribution tails such as asymmetry and excess kurtosis. 

3.1. Regulatory intervention probability 
Let 𝜂𝜂 be a minimum bank solvency level at time 𝑡𝑡 defined by a banking regulator to cover unexpected losses 
in the portfolio risks. A bank must maintain a 𝑆𝑆𝑆𝑆𝑡𝑡 level equal to or greater than 𝜂𝜂 in order not to be 
intervened (𝑆𝑆𝑆𝑆𝑡𝑡 ≥ 𝜂𝜂).  

Since 𝑆𝑆𝑆𝑆𝑡𝑡 is calculated by dividing 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 by 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 , it can be expressed in 𝑡𝑡 + 1 by means of Eq. (2). 

𝑆𝑆𝑅𝑅𝑡𝑡+1 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡∗𝑒𝑒𝑒𝑒𝑒𝑒(−𝑇𝑇𝑇𝑇𝑅𝑅𝑡𝑡+1)
𝑅𝑅𝑅𝑅𝐴𝐴𝑡𝑡∗𝑒𝑒𝑒𝑒𝑒𝑒(𝑃𝑃𝑃𝑃𝑅𝑅𝑡𝑡+1)

= 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡
𝑅𝑅𝑅𝑅𝐴𝐴𝑡𝑡∗𝑒𝑒𝑒𝑒𝑒𝑒(𝑃𝑃𝑃𝑃𝑅𝑅𝑡𝑡+1+𝑇𝑇𝑇𝑇𝑅𝑅𝑡𝑡+1)

,         (2) 

where 𝑇𝑇𝑇𝑇𝑇𝑇 is calculated as the first logarithmic difference of the value of the Tier capital supporting the 
risk portfolio.  

Given that 𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡+1 = 𝑃𝑃𝑃𝑃𝑅𝑅𝑡𝑡+1 + 𝑇𝑇𝑇𝑇𝑅𝑅𝑡𝑡+1 to avoid regulator’s intervention, 𝑆𝑆𝑅𝑅𝑡𝑡 ∗ 𝑒𝑒−𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡+1 ≥ 𝜂𝜂 must be 
satisfied. 

Therefore, the maximum value that 𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡+1 can take, given a regulatory solvency level of 𝜂𝜂, is given by Eq. 
(3). 

𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡+1
𝜂𝜂 = 𝑙𝑙𝑙𝑙 �𝑆𝑆𝑅𝑅𝑡𝑡

𝜂𝜂
� ,            (3) 

i.e., 𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡+1
𝜂𝜂  depends on the distance between the logarithm of the observed solvency ratio level and the 

minimum regulatory level. Thus, the regulatory intervention probability can be expressed using Eq. (4). 

𝑝𝑝�𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡+1 > 𝑆𝑆𝑆𝑆𝑅𝑅𝑡𝑡+1
𝜂𝜂 � = 1 − 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆 �𝑙𝑙𝑙𝑙 �

𝑆𝑆𝑅𝑅𝑡𝑡
𝜂𝜂
�� ,         (4) 

𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆 being the cumulative probability function (cdf) of the 𝑆𝑆𝑆𝑆𝑆𝑆. Analogously, in the event that the decline 
in the solvency ratio is only due to an increase in the risk portfolio or Tier, the intervention probability will 
be 1 − 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃(𝑙𝑙𝑙𝑙[𝑆𝑆𝑅𝑅𝑡𝑡/𝜂𝜂]) and 1 − 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇(𝑙𝑙𝑙𝑙[𝑆𝑆𝑅𝑅𝑡𝑡/𝜂𝜂]), respectively. In these latter cases, 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 5F

6 and 𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇 are the 
cumulative probability functions of the PGR and the TDR, respectively, and regulatory intervention 
probability depends on the distance between the logarithm of the observed solvency ratio level and the 
minimum regulatory level. 

 
6 𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 can be determined as the joint distribution of different modules and submodules of the risk portfolio. 



 

3.2 Policies based on Quantile Risk Measures (QRMs) 

The second pillar established by the Basel Committee requires the development of risk management 
policies through measures that reflect banks’ risk profile and appetite. In this framework, the EC should be 
estimated as a quantile of the pdf of losses of the banks’ portfolio risk. 

The estimation of such a quantile considers the bank’s risk profile, which is reflected in the different 
parameters of the pdf (e.g., variance, skewness, and kurtosis), as well as its risk appetite, by determining the 
probability 𝛼𝛼 associated to the quantile, which depends on the risk appetite in the decision-making process. 

Alexander (2008) defines Quantile Risk Metrics (QRMs), for any 𝛼𝛼 between 0 and 1, as the 𝑥𝑥𝛼𝛼  quantile of the 
distribution of a continuous random variable 𝑋𝑋 such that 𝑃𝑃(𝑋𝑋 < 𝑥𝑥𝛼𝛼) = 𝛼𝛼. 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 can be calculated using the 
quantile function 𝐹𝐹𝑋𝑋−1, associated to a cdf 𝐹𝐹𝑋𝑋, as defined in Eq. (5). 

𝑄𝑄𝑄𝑄𝑀𝑀𝛼𝛼 = 𝐹𝐹𝑋𝑋−1(𝛼𝛼) = 𝑖𝑖𝑖𝑖𝑖𝑖{𝑥𝑥 ∈ 𝑅𝑅:𝛼𝛼 ≤ 𝐹𝐹𝑋𝑋(𝑥𝑥)}.         (5) 

These 𝑄𝑄𝑄𝑄𝑀𝑀𝛼𝛼  allow the incorporation of the risk appetite by establishing the probability of obtaining 
positive or negative variations of X, that are greater than the expected maximum value. Policies based on 
QRMs make it possible to set the minimum solvency level that a bank should have in order to withstand the 
maximum expected shock, 𝐹𝐹𝑋𝑋−1(𝛼𝛼), that would deteriorate solvency in case of falling below a minimum 
regulatory level (𝜂𝜂). In general terms, random variable 𝑋𝑋 is any source of risk on which bank solvency 
depends such as 𝑃𝑃𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇𝑇𝑇 or 𝑆𝑆𝑆𝑆𝑆𝑆. Let 𝑆𝑆𝑅𝑅𝑡𝑡

𝜂𝜂,𝛼𝛼  be the solvency ratio level required to withstand the maximum 
expected shock, 𝐹𝐹𝑋𝑋−1(𝛼𝛼), given a confidence level of 1 − 𝛼𝛼, it can be expressed by means of Eq. (6). 

𝑆𝑆𝑅𝑅𝑡𝑡
𝜂𝜂,𝛼𝛼 = 𝜂𝜂 ∗ 𝑒𝑒𝐹𝐹𝑋𝑋

−1(𝛼𝛼).            (6) 

In the event that the portfolio risk cannot be rebalanced, the adjustment of the solvency ratio will depend 
on an economic capital readjustment. Therefore. The economic capital that must be held at the beginning 
of the period 𝑡𝑡 + 1 to support a 𝐹𝐹𝑋𝑋−1(𝛼𝛼) shock must meet the following condition:𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 𝜂𝜂 ∗ 𝑅𝑅𝑅𝑅𝐴𝐴𝑡𝑡 ∗ 𝑒𝑒𝐹𝐹𝑋𝑋

−1(𝛼𝛼). 
Thus, economic capital does not only depend just on the value of the portfolio risk and the minimum 
regulatory level (𝜂𝜂), but also depends on the risk appetite (𝛼𝛼) and the risk profile which is reflected in 
𝐹𝐹𝑋𝑋−1(𝛼𝛼). 

3.3. Determination the probability density functions of the 𝑺𝑺𝑺𝑺𝑺𝑺 , the 𝑻𝑻𝑻𝑻𝑻𝑻, and the 𝑷𝑷𝑷𝑷𝑷𝑷 

To measure the regulatory intervention probability and establish policies based on 𝑄𝑄𝑄𝑄𝑀𝑀𝛼𝛼 , the pdf of the 
sources of solvency risk must be determined. In this paper, we propose the modeling of such pdf using GC 
expansions. These expansions allow to model the heavy tails observed in the sources of bank solvency risk. 
Given the conditional dynamics of the mean and variance of the sources of solvency risk, we propose the 
use of Autoregressive Moving Average (ARMA) and Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) models, respectively, to estimate these parameters. However, for the sake of 
notational simplicity, random variable 𝑋𝑋 representing any source of solvency risk denotes a standard 
variable with location and scale parameter 0 and 1 respectively. 

3.3.1. Mean-variance model 

To calculate the mean of the random variable 𝜔𝜔, we propose the use of ARMA because they are sensitive to 
short-term variations and capture the time-varying dependence patterns observed in the series under 
analysis. Random variable 𝜔𝜔 can be any source of solvency risk, such as PGR, TDR or SDR with no 
standardization. It is expressed in 𝑡𝑡 as follows: 

𝜔𝜔𝑡𝑡 = 𝜙𝜙0 + ∑ 𝜙𝜙𝑖𝑖
𝑝𝑝
𝑖𝑖=1 𝜔𝜔𝑡𝑡−𝑖𝑖 + ∑ 𝜃𝜃𝑗𝑗

𝑞𝑞
𝑗𝑗=1 𝑎𝑎𝑡𝑡−𝑞𝑞 + 𝑎𝑎𝑡𝑡 ,          (7) 



 

where 𝜙𝜙 denote the Autoregressive (AR) parameters; 𝜃𝜃, the Moving Average (MA) parameters; and 𝑎𝑎, the 
model errors. 𝑎𝑎 can be expressed in 𝑡𝑡 as 

𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜉𝜉𝑡𝑡 ,              (8) 

where 𝜉𝜉𝑡𝑡 is a random white noise variable; and 𝜎𝜎𝑡𝑡  is the conditional variance of 𝜔𝜔, which follows a GARH  

Bollerslev (1986) process as illustrated in Eq. (9). 

𝜎𝜎𝑡𝑡 = �𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝑎𝑎𝑡𝑡−𝑖𝑖2𝑚𝑚
𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖𝜎𝜎𝑡𝑡−𝑗𝑗2𝑠𝑠

𝑗𝑗=1 .         (9) 

3.3.2. Gram-Charlier expansion 

To estimate the density function of the random variable 𝑋𝑋, reference is made to Davis (1976) and Kolassa 
(2006), who propose a model that considers higher order approximations of the density 𝑓𝑓𝑋𝑋 of random 
variable 𝑋𝑋, from a reference density 𝑓𝑓𝑌𝑌, which corresponds to a random variable 𝑌𝑌. We define 𝑋𝑋 = 𝑍𝑍 + 𝑌𝑌, 
where 𝑍𝑍 is a variable with mean and zero variance and with the same higher order cumulants (𝑘𝑘3, 𝑘𝑘4, ….) as 
𝑋𝑋, which contains the corresponding information of the distortions of 𝑓𝑓𝑋𝑋 with respect to the normal 
distribution. 𝑍𝑍 and 𝑌𝑌 are orthogonal, which implies that they are linearly independent. 

Let 𝑍𝑍 =
∑ 𝑌𝑌𝑗𝑗𝑛𝑛
𝑗𝑗=1

√𝑛𝑛
 be standardized sum of 𝑛𝑛 independent and identically distributed variables (𝑌𝑌1,𝑌𝑌2, … . . . .𝑌𝑌𝑛𝑛). 

Then, its characteristic function 𝜁𝜁(𝑢𝑢) defined as Fourier’s inverse transform of a 𝜇𝜇 probability measure into 
𝑅𝑅𝑛𝑛 can be written as 

𝜁𝜁(𝑢𝑢) = ∫ 𝑒𝑒𝑖𝑖(𝑢𝑢,𝜗𝜗)𝜇𝜇(𝑑𝑑𝑑𝑑),            (10) 

where 𝑖𝑖 is the imaginary unit. Hence, the characteristic function of 𝑍𝑍 is 𝜑𝜑𝑍𝑍(𝑢𝑢) = 𝐸𝐸[𝑒𝑒𝑖𝑖(𝑢𝑢,𝑍𝑍)] = ∫ 𝑒𝑒𝑖𝑖(𝑢𝑢,𝑧𝑧)𝑓𝑓𝑍𝑍(𝑑𝑑𝑑𝑑), 
where 𝑓𝑓𝑍𝑍 is the pdf of 𝑍𝑍. Characteristic functions always exist because they are equal to the Fourier 
transforms of the probability measures that always exist (Jacod & Protter, 2012). By conditioning on 𝑍𝑍 = 𝑧𝑧, 
𝑋𝑋 has a pdf and by expanding 𝑓𝑓𝑌𝑌 as a Taylor series, 𝑓𝑓𝑌𝑌(𝑥𝑥 − 𝑧𝑧) = ∑ 𝑓𝑓𝑌𝑌

(𝑗𝑗)∞
𝑗𝑗=0 (𝑥𝑥)(−𝑧𝑧)𝑗𝑗/𝑗𝑗!. Thus, according to 

Kolassa (2006) the unconditional density of X is given by 

𝑓𝑓𝑋𝑋(𝑥𝑥) = ∑ 𝑓𝑓𝑌𝑌
(𝑗𝑗)∞

𝑗𝑗=0 (𝑥𝑥)
(−1)𝑗𝑗𝜇𝜇𝑗𝑗

∗

𝑗𝑗!
,           (11) 

where 𝜇𝜇𝑗𝑗∗ denote the moments of 𝑍𝑍 that need to be added to 𝑌𝑌 to get 𝑋𝑋. The order cumulant 𝑗𝑗, 𝑘𝑘𝑗𝑗∗, associated 
with 𝑍𝑍, is the cumulant 𝑗𝑗 of 𝑋𝑋 minus the corresponding cumulant of 𝑌𝑌. Multiplying 𝑓𝑓𝑋𝑋(𝑥𝑥) by 𝑓𝑓𝑌𝑌(𝑥𝑥) in the 
numerator and the denominator we get the following expression: 

𝑓𝑓𝑋𝑋(𝑥𝑥) =
𝑓𝑓𝑌𝑌(𝑥𝑥)∑ 𝑓𝑓𝑌𝑌

(𝑗𝑗)∞
𝑗𝑗=0 (𝑥𝑥)(−1)𝑗𝑗𝜇𝜇𝑗𝑗

∗

𝑗𝑗!𝑓𝑓𝑌𝑌(𝑥𝑥)
. 

By defining ℎ𝑗𝑗 = (−1)𝑗𝑗𝑓𝑓𝑌𝑌
(𝑗𝑗)(𝑥𝑥)

𝑓𝑓𝑌𝑌
, it can be expressed as 

𝑓𝑓𝑋𝑋(𝑥𝑥) = 𝑓𝑓𝑌𝑌(𝑥𝑥)∑ ℎ𝑗𝑗∞
𝑗𝑗=0 (𝑥𝑥)𝜇𝜇𝑗𝑗∗/𝑗𝑗!.           (12) 

Function ℎ𝑗𝑗 are the ratios between 𝑓𝑓𝑌𝑌
(𝑗𝑗), which is the order derivative 𝑗𝑗 of weight function 𝑓𝑓𝑌𝑌. If weight 

function 𝑓𝑓𝑌𝑌 is the normal density, 𝜙𝜙(𝑥𝑥), then ℎ𝑗𝑗 corresponds to the polynomial functions known as Hermite 
Polynomials (HPs), which are orthogonal to 𝜙𝜙(𝑥𝑥). The infinite series in terms of HPs express a function 𝜃𝜃(𝑥𝑥), 
such that 𝜃𝜃(𝑥𝑥) = ∑ 𝛿𝛿𝑗𝑗∞

𝑗𝑗=1 ℎ𝑗𝑗 , where according to Eq. (13), 

𝛿𝛿𝑗𝑗 = 1
𝑗𝑗!∫ ℎ𝑗𝑗

∞
−∞ (𝑥𝑥)𝜙𝜙(𝑥𝑥)𝑑𝑑𝑑𝑑.            (13) 



 

In addition, 𝑓𝑓𝑋𝑋 and 𝜙𝜙(𝑥𝑥) will have the same mean and variance and function ℎ𝑗𝑗 is given by 

ℎ𝑗𝑗 =
(−1)𝑗𝑗� 𝑑𝑑

𝑗𝑗

𝑑𝑑𝑥𝑥𝑗𝑗
𝑒𝑒
−𝑥𝑥2
2 �

𝑒𝑒
−𝑥𝑥2
2

.             (14) 

The orthogonality condition is satisfied in such a way that 

∫ ℎ𝑗𝑗
∞
−∞ (𝑧𝑧)ℎ𝑖𝑖(𝑧𝑧)𝜙𝜙(𝑥𝑥) = 0, ∀𝑗𝑗 ≠ 𝑖𝑖.          (15) 

Eq. (15) indicates that the HPs represent an orthogonal base with respect to the weight function 𝜙𝜙(𝑥𝑥). For 
the empirical application of the model, this property of orthogonality with respect to the weight function 
makes it possible to truncate the HP series to an order n, thus defining the family of functions in Eq. (16). 
This family integrates one in virtue of the orthogonality property and thus define the Gram-Charlier pdfs in 
the regions recently described by Lin & Zhang (2020). 

𝑓𝑓𝑋𝑋,𝑛𝑛(𝑥𝑥) = 𝜙𝜙(𝑥𝑥)∑ ℎ𝑗𝑗𝑛𝑛
𝑗𝑗=0 (𝑥𝑥)𝜇𝜇𝑗𝑗,𝑛𝑛

∗ /𝑗𝑗!.           (16) 

On the other hand, this expansion density may be also characterized in terms of cdfs. In particular, 𝐹𝐹𝑌𝑌 and 
𝐹𝐹𝑋𝑋 are the cdfs associated with 𝑓𝑓𝑌𝑌, and 𝑓𝑓𝑋𝑋, respectively, then 𝐹𝐹𝑋𝑋 can be approximated as follows: 

𝐹𝐹𝑋𝑋 = 𝐹𝐹𝑌𝑌(𝑥𝑥) − 𝑓𝑓𝑌𝑌(𝑥𝑥)∑ ℎ𝑗𝑗−1∞
𝑗𝑗=1 (𝑥𝑥)𝜇𝜇𝑗𝑗∗/𝑗𝑗!.          (17) 

If the weight function is the normal pdf 𝜙𝜙(𝑥𝑥) with cdf denoted by 𝛷𝛷(𝑥𝑥), the cdf is given by: 

𝐹𝐹𝑋𝑋,𝑛𝑛 = 𝛷𝛷(𝑥𝑥) − 𝜙𝜙(𝑥𝑥)∑ ℎ𝑗𝑗−1𝑛𝑛
𝑗𝑗=1 (𝑥𝑥)𝜇𝜇𝑗𝑗,𝑛𝑛

∗ /𝑗𝑗!.          (18) 

For convenience, the moments 𝜇𝜇𝑗𝑗∗ are replaced with cumulants 𝑘𝑘𝑗𝑗∗ and usually it is assumed 𝜇𝜇0,𝑛𝑛
∗ = 1, 𝜇𝜇1,𝑛𝑛

∗ =
𝜇𝜇2,𝑛𝑛
∗ = 0, thus expressing 𝑓𝑓𝑋𝑋,𝑛𝑛(𝑥𝑥) = 𝑔𝑔(𝑥𝑥;𝑑𝑑) as in Eq. (19), as stated by Cortés et al. (2016), among others, 

𝑔𝑔(𝑥𝑥;𝑑𝑑) = �1 + ∑ 𝑑𝑑𝑗𝑗𝑛𝑛
𝑗𝑗=3 ℎ𝑗𝑗(𝑥𝑥)�𝜙𝜙(𝑥𝑥).          (19) 

Here, 𝑑𝑑 is a vector of parameters (𝑑𝑑1,𝑑𝑑2, , . . . . ,𝑑𝑑𝑛𝑛,) that contains the corresponding information of the 
distortions of 𝑓𝑓𝑋𝑋 with respect to the normal distribution 𝜙𝜙(𝑥𝑥) and that guarantees that 𝑔𝑔(𝑥𝑥;𝑑𝑑) ≥ 0 ,∀𝑥𝑥 ∈ ℝ. 
The Gram-Charlier series can accurately approximate the sample distribution to 𝑓𝑓𝑋𝑋, because lim

𝑛𝑛
𝑔𝑔(𝑥𝑥;𝑑𝑑) =

𝑓𝑓𝑋𝑋. In practice, most applications of this distribution only include third- and fourth-order HPs related to the 
skew and excess kurtosis (Del Brio & Perote, 2012) so that 

𝑔𝑔(𝑥𝑥;𝑑𝑑3,𝑑𝑑4) = [1 + 𝑑𝑑3(𝑥𝑥3 − 3𝑥𝑥) + 𝑑𝑑4(𝑥𝑥4 − 6𝑥𝑥2 + 3)]𝜙𝜙(𝑥𝑥).      (20) 

3.3.3. Estimating Gram-Charlier parameters 

In most applications of Gram-Charlier expansions parameters are estimated using the Maximum Likelihood 
(ML) method which, assuming that the first two moments of the distribution are well specified, the global 
optima guarantee that 𝑔𝑔(𝑥𝑥;𝑑𝑑) is positive. Del Brio & Perote (2012) compare estimation via the ML method 
with that of the Method of Moments (MM) and conclude that both provide similar results. However, the MM 
estimation can only guarantee positive values for 𝑔𝑔(𝑥𝑥;𝑑𝑑) in the asymptotic expansion and does not ensure 
positivity when the series is truncated with few terms. Therefore, we implement ML estimation and expand 
the series until the fourth moment, as is usually done to capture skewness and kurtosis. Thus, for a sample 
size 𝑇𝑇 the log-likelihood function log(𝐿𝐿) is given by 

𝑙𝑙𝑙𝑙𝑙𝑙(𝐿𝐿) = −𝑇𝑇
2
𝑙𝑙𝑙𝑙𝑙𝑙(2𝜋𝜋) − 1

2
∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑡𝑡2)𝑇𝑇
𝑡𝑡=1 + ∑ 𝑙𝑙𝑙𝑙𝑙𝑙��1 + ∑ 𝑑𝑑𝑗𝑗𝑛𝑛

𝑗𝑗=3 ℎ𝑗𝑗(𝑥𝑥𝑡𝑡)��𝑇𝑇
𝑡𝑡=1 .     (21) 



 

4. Sample description 

As a case study, we collected data on the solvency of banks in Colombia by month from January 2002 to May 
2020.7 In the sample, 60% of the institutions correspond to international banks that concentrate more than 
80% of the banking assets. Colombian banking regulation is currently transitioning from Basel II to Basel 
III. According to the calculations by the International Monetary Fund (IMF) for 2011, the solvency of the 
financial system in countries such as Colombia, Chile, Brazil, Mexico, and Peru partially comply with the 
requirements set by Basel III, considering that, in general terms, the quality of capital was good and the 
average regulatory margin regarding SR was above 10% (the minimum regulatory is 𝑆𝑆𝑆𝑆 ≥ 9%). According 
to Clavijo et al. (2012) Colombia must adjust its capital to comply with the Basel III requirements. These 
adjustments (or capital cleaning) could imply decreases in the solvency ratio in the range of 2.2% to 2.5%. 
For the solvency analysis in Colombia, the values of Tier and RWA are calculated by adding the value of the 
capital and portfolio of all banks, respectively. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝐾𝐾

𝑗𝑗=1  and 𝑅𝑅𝑅𝑅𝐴𝐴 = ∑ 𝑅𝑅𝐾𝐾
𝑗𝑗=1 𝑊𝑊𝐴𝐴𝑗𝑗 , where 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗  and 

𝑅𝑅𝑅𝑅𝐴𝐴𝑗𝑗  are the value of the capital and portfolio risk of bank 𝑗𝑗 and 𝐾𝐾 is the number of banks being aggregated. 

Fig. 1. Monthly time series of Solvency Ratio (a), Tier (b), and Risk-Weighted Assets (RWA) (c) of the Colombian banking system. 

According to Fig. 1a, SR shows an upward trend and reaches its highest value (17%) in February 2013. In 
2017, SR reaches values close to 16% and then begins to decrease until reaching 14.5% in February 2020. 
In March 2020, the central bank of Colombia (Banco de la República de Colombia) is required to inject 
permanent liquidity into the economy to facilitate the proper functioning of the financial markets, which 
causes the solvency of the banking system to fall to 13.6%. These levels had not been observed since the 
end of 2013. In total, from January to April 2020, the solvency ratio presented a higher decrease than 7%. 
Tier capital (Fig. 1b) shows no significant changes at the beginning of the COVID-19 pandemic, while the 
𝑅𝑅𝑅𝑅𝑅𝑅 value exhibits an increase of nearly 6% in March 2020, caused by the liquidity injection measures 
implemented to withstand the effects of COVID-19 (Fig. 1c). The increased RWA value without an increase 
in the Tier causes leads to marked decline in the solvency levels. 

 
7 The database is published on the website of the Superintendencia Financiera de Colombia (Financial Superintendence of Colombia), 
which is the entity in charge of regulating the Colombian banking system.  



 

 

Fig. 2. Frequency distributions of the monthly Portfolio Growth Rate, Tier Decline Rate, and Solvency Decline Rate. 

As depicted in Fig. 2, the PGR is skewed to the right, which means that its observed increases are more 
extreme than its decreases. The distribution of the TDR is more symmetric. The observed distribution of the 
SDR corresponds to the sum of the PGR and the TDR and presents asymmetry in the right tail. 

Table 1. Correlation matrix among variations in the components of solvency. 
 PGR TDR SDR 

PGR 1.000 -0.150 0.267 

TDR -0.150 1.000 0.913 

SDR 0.267 0.913 1.000 

 

Table 1 shows the correlations between PGR, TDR, and SDR. As observed, the correlation between SDR and 
TDR is much greater than that between SDR and PGR, which implies that solvency is more sensitive to 
variations in the Tier than to variations in the risk portfolio. The low correlation between PGR and TDR 
(negative sign) suggests that when the value of the portfolio risk increases, so does the Tier capital (which 
corresponds to countercyclicality). However, this low correlation indicates that this adjustment is not made 
every time in the same period.8 

Table 2. Descriptive statistics of the PGR, TDR and SDR. 
 Min Max Mean Std. Deviation Skewness Excess Kurtosis q5 q10 q90 q95 

PGR -0.022 0.112 0.013 0.015 2.377 10.356 -0.004 -0.002 0.026 0.036 

TDR -0.180 0.113 -0.013 0.036 -1.018 4.851 -0.081 -0.049 0.018 0.031 

SDR -0.159 0.124 -0.001 0.036 -0.650 3.309 -0.066 -0.039 0.032 0.055 

 

Table 2 presents basic descriptive statistics of the PGR, TDR and SDR. It is noteworthy that PGR and TDR 
present an average growth rate of 1.3% per month, which indicates that the Tier has grown in proportion 
to the risks. Nevertheless, the standard deviation of TDR is greater than that of PGR. The average SDR is 
close to zero, which means that, for the period under analysis, solvency has remained at around an average 
level (close to 14%). The positive excess kurtosis in all the series suggests the presence of heavy tails in all 
components and their aggregation. The PGR shows a marked asymmetry towards the right tail. 

 
8 The cross-correlation diagram presented in Annex 1 shows that the highest correlation between PGR and capital CDR occurs at 
lags 5 and 10, which means that TIER adjustments are five months ahead of the variations of this component. However, a high 
correlation is also observed in period -2, which means that certain increases in the portfolio risk are compensated by capital 
increases two months later. 



 

 

Fig. 3. Monthly time series, Q-Q plot, and correlogram of the Portfolio Growth Rate (a, b, c), Tier Decline Rate (d, e, f), and Solvency Decline Rate (g, h, i). 

As observed in Fig. 3, there are time-varying patterns of mean (given the frequency in which the financial 
statements are reported) and clusters of volatility in the time series. In March and April 2020, a positive 
shock on RWA is observed, which represents an increase of more than 8% with respect to February levels, 
followed by a fall of 2.18%, which becomes the maximum negative variation in the series. According to the 
Q-Q plot of PGR (Fig. 3b), in the left tail and in the center, the quantile of the normal distribution is close to 
the frequency distribution, while, in the right tail, the frequency distribution is heavier than the normal 
distribution. The Q-Q plots of TDR and SDR (Figs. 3e and 3h, respectively) show that the frequency 
distribution does not approximate the normal quantile in either tail. 

In relation to the Autocorrelation Function (ACF) correlograms (Figs. 3c, 3f, and 3i), there are cuts of the 
confidence interval in order 1 and the autocorrelation grows for lags 3, 6, and 9. The time series of the SDR 
(Fig. 3d) exhibits volatility clusters. The time series of the SDR (Fig. 3d) exhibits volatility clusters. 

Table 3. Dickey-Fuller and Box-Ljung tests on variations in Portfolio Growth Rate, Tier Decline 
Rate, and Solvency Decline Rate. 

test p-value PGR p-value TDR p-value SDR 

Dickey-Fuller 0.01 0.01 0.01 

Box-Ljung 0.00 0.00 0.00 

 

The results of the Dickey–Fuller test for the PGR, the TDR, and the SDR indicate that these variables are 
stationary since the null hypothesis of non-stationarity is rejected; and those of the Box–Ljung test reveal 
the presence of autocorrelation in the three series (Table 3). 

 

 

 

 



 

5. Results 

5.1. Fitted distribution 

 

Table 4. Estimated parameters of the moments of the GC probability distributions for the Portfolio 
Growth Rate (PGR), Tier Decline Rate (TDR), and Solvency Decline Rate (SDR). 

PGR parameters 

 Estimate 
Std. 

Error t value Pr(>|t|) 

ar1 0.249 0.064 3.877 0.000 

ar3 0.113 0.065 1.740 0.082 

ar9 0.147 0.065 2.267 0.023 

ar12 0.118 0.066 1.805 0.071 

intercept 0.005 0.002 2.964 0.003 

a0 0.000 0.000 17.312 0.000 

a1 0.189 0.042 4.545 0.000 

d3 0.124 0.039 3.193 0.001 

d4 0.102 0.016 6.433 0.000 
 

TDR parameters 

 Estimate 
Std. 

Error t value Pr(>|t|) 

ar6 0.186 0.055 3.388 0.001 

ar12 0.712 0.065 11.019 0.000 

ma12 -0.430 0.086 -5.021 0.000 

a0 0.000 0.000 8.150 0.000 

a1 0.444 0.078 5.692 0.000 

a2 0.174 0.062 2.794 0.005 

d4 0.086 0.016 5.493 0.000 
 

SDR parameters 

 Estimate 
Std. 

Error 
t 

value Pr(>|t|) 

ar6 0.265 0.057 4.649 0.000 

ar12 0.461 0.056 8.166 0.000 

a0 0.000 0.000 7.425 0.000 

a1 0.145 0.062 2.361 0.018 

a2 0.232 0.084 2.775 0.006 

d4 0.093 0.017 5.385 0.000 
 

 

Table 4 presents the estimated parameters of the moments of the probability distributions for PGR, TDR, 
and SDR. In the three cases, the mean shows time-varying patterns effects of quarterly multiples (3, 6, 9, 
and 12 months). Additionally, PGR exhibits an autoregressive effect of order 1. The variances are the ARCH 
1 process for the three variables under analysis (parameters a0 and a1). With respect to the GC parameters, 
the kurtosis parameters are significant for the three series, while skewness is only significant for PGR. 

Fig. 4. a, c, and e compare the frequency histograms of the standardized residuals of the mean model with the normal (continuous line) and GC (dotted line) probability 
density functions of the Portfolio Growth Rate (PGR), Tier Decline Rate (TDR), and Solvency Decline Rate (SDR), respectively. b, d, and f present the cumulative 
distribution functions for the GC and normal and the three-time series. 

Figure 4 shows how the Gram-Charlier pdf (Figs. 4a, 4c, and 4e) fits the deviations observed in the frequency 
histograms of the standardized residuals of the mean model compared to the normal fit and for the PGR, the 
TDR, and the SDR, respectively. The pdf Gram-Charlier captures the heavy tails of the frequency histograms 
and the right-tail asymmetry of PGR. Figs. 4b, 4d, and 4f compare the GC cdfs with that of normal cdfs. The 
differences between the cdf GC and its normal counterpart for PGR in the left tail are less marked than those 
observed in the right tail, where the GC quantiles are greater than the normal ones, whilst for TDR and SDR, 
this difference between the right and left tails is not marked.  



 

5.2. Regulatory intervention probability 

Fig. 5. Probability of regulatory intervention for different minimum regulatory solvency levels in March and April 2020. 

As observed in Fig. 5, the probability of regulatory intervention increases for all the different levels of 
minimum regulatory solvency levels due to the liquidity injection undertaken in the economy to solve the 
needs generated by the COVID-19 pandemic in March 2020. In the case of Colombia, if we take into account 
the adjustment proposed by Clavijo et al. (2012) (from 2% to 2.5%) and the higher required levels behind 
the transition from Basel II to Basel III, we could consider an 𝜂𝜂 higher than 14% (considering the adjustment 
over the minimum level, 𝜂𝜂). Above this 14% level, the probability of regulatory intervention rose from 4.9% 
in March 2020 to 69.2% in April 2020 after the COVID-19 shock. The increase in the probability of 
insolvency from March to April 2020 is smaller for the extreme values of 𝜂𝜂. 

5.3. Quantile Risk Measures over the PGR, the TDR and the SDR. 

Based on the parameters estimated for the probability distributions of the PGR, the TDR, and the SDR, we 
calculated the QRMs, which provide estimated scenarios involving loss of bank solvency, given a risk 
appetite level of 𝛼𝛼. 

Fig. 6. Probability interval backtesting for the Portfolio Growth Rate (PGR), Tier Decline Rate (TDR), and Solvency Decline Rate (SDR). 

Fig. 6 compares the time series under analysis with the estimated QRMs assuming a GC pdf and a normal 
pdf. The interval for the Gram-Charlier is found to be wider than the normal one, which implies that the risk 
measurement under the Gaussian assumption underestimates the risk when compared to the measurement 
obtained using a GC pdf (asymptotically the true distribution). 



 

5.3.1. Backtesting 

To measure and compare the performance of the QRMs estimated under the assumption of either a Gram-
Charlier or a normal pdf, we used the Kupiec’s and Lopez’s tests. 

Table 5. Comparison of backtesting results under a Gram-Charlier and normal setting using 
Kupiec’s and Lopez’s tests on the Portfolio Growth Rate (PGR), Tier Decline Rate (TDR), and 
Solvency Decline Rate (SDR). 
 

 p-value Kupiec PGR p-value Kupiec TDR p-value Kupiec SDR Score Lopez PGR Score Lopez TDR Score Lopez SDR 

Gram-Charlier 0.151 0.182 0.303 5.001 2.001 1.002 

normal 0.321 0.051 0.321 6.003 4.003 4.004 

 

Table 5 presents the results of the Kupiec’s and Lopez’s tests used in this study to measure the performance 
of the GC and normal quantile measures for the PGR, TDR, and SDR. According to these results, the Kupiec’s 
test, which compares the theoretical quantile with the empirical one through a ratio comparison hypothesis 
test, only generates rejection for the normal model applied to the TDR. For its part, the Lopez’s test, which 
considers the distance between the QRMs and the observed exceptions, reveals that, for all the series, the 
score is lower under GC settings than under normal settings. This means that the intensities of the 
exceptions are lower under the GC setting.  

 

Fig. 7. Percentage increase in the solvency level for different minimum regulatory solvency levels and different risk appetite levels. 

Fig. 7 illustrates the necessary increase in the solvency levels to support the maximum expected shock, 
𝐹𝐹𝑋𝑋−1(𝛼𝛼), on solvency under the assumption of a Gram-Charlier pdf, for different minimum regulatory 
solvency levels (𝜂𝜂) and different risk appetite levels (𝛼𝛼). RWA of the Colombian banking system in March 
2020 increased by 6.04% with respect to February 2020. This suggests that said increase is greater than 
the 99th percentile of the probability distribution of PGR, which was measured under the assumption of 
either a Gram-Charlier or a normal pdf with the 99th percentile being 4.8% and 3.9%, respectively. Thus, 
the increase in the RWA in March 2020 exceeds the 99th Gram-Charlier (normal) percentile by 1.2% (2.2%). 

Conclusions. 

The QRMs based on Gram-Charlier pdfs facilitate the solvency risk management and promote a better 
convergence of regulatory capital to the economic capital. This makes it possible to incorporate risk appetite 
levels by establishing the levels for the parameter 𝛼𝛼 required to estimate the QRMs. In addition, it allows 
the incorporation of parameters that depend on each bank’s risk profile, such as those provided by the GC 
pdf, which, compared to the normal pdf, captures the distortions of the higher moments of the loss pdf. QRMs 
follow the guidelines established by the Basel Committee, which consider banks’ risk appetite and profile. 



 

Also, the distance between the observed solvency level and the minimum required by the regulator is 
considered.  

Moreover, measuring solvency risk using pdfs provides more risk-sensitive measures that consider the 
dynamics of a bank’s risk portfolio and the capital supporting this portfolio. This facilitates decision making 
about the different factors that affect bank solvency (e.g., measures of liquidity injection implemented by 
governments to cover the needs of liquidity generated by the COVID-19 crisis), considering the restrictions 
of the banking system has in terms of solvency. The assumption of normality does not allow the estimation 
of the higher moments of the pdf, thus undervaluing banks’ risk profiles. This methodology based on QRMs 
is Basel-compliant, in the sense that it considers each bank’s risk appetite and profile.  

The shock suffered by the risk portfolios at the beginning of the crisis caused by the injection of liquidity 
into the different economies shows that this type of event must be considered in allocating economic capital 
to support portfolio risk. The methodology proposed in this paper allows the estimation of the necessary 
increases in the solvency levels to absorb these events. Regarding the findings from the sample under 
analysis, the frequency distributions of SDR and its components (TDR and PGR) were found to have time-
varying patterns components in the mean and variance, which can be captured using ARMA and GARCH 
models, respectively. Concerning the higher moments of the probability distributions, we observed that the 
frequency distributions of the variables under analysis are leptokurtic and, PGR has a marked skewness to 
the right. After modeling the pdf of the PGR, the shock suffered by the increase in the portfolio risk in March 
2020 in Colombia was found to exceed the 99th percentile under both GC distribution and a normal 
distribution. In addition, this shock increased the probability of regulatory intervention for April 2020. 
Considering the higher minimum regulatory solvency levels behind the transition of the Colombian banking 
system from Basel II to Basel III, the probability of regulatory intervention is in a more critical position 
considering that the levels of the economic capital requirement to cover the maximum expected solvency 
declines (estimated as QRMs) increase exponentially with higher minimum regulatory solvency levels and 
higher risk appetite levels. 

In a nutshell, increases in a bank’s risk portfolio without a capital increase cause a decline in solvency and, 
thus, increase the risk of insolvency. These falls in solvency lead to a decreased confidence among market 
agents and can trigger reductions in credit ratings. After backtesting, the Gram-Charlier pdf was proven to 
have a better performance than the normal pdf according to the lower magnitude of the exceptions found 
at a 99%.  This evidence at the Colombian economy is expected to happen in most economies after the global 
Covid19 pandemic. Thus, revising the methodologies accounting to solvency risk to incorporate flexible 
distributions as the Gram-Charlier would be worthwhile. 
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Annex 1: Tier cross-correlation diagram with risk portfolio components 
Fig. 8. Cross-correlation between changes in the risk portfolio and changes in Tier capital. 
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