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A B S T R A C T   

A data assimilation system for the LOTOS-EUROS chemical transport model has been implemented to improve 
the simulation and forecast of PM10 and PM2.5 in a densely populated urban valley of the tropical Andes. The 
Aburr�a Valley in Colombia was used as a case study, given data availability and current environmental issues 
related to population expansion. The data assimilation system is an Ensemble Kalman filter with covariance 
localization based on specification of uncertainties in the emissions. Observations assimilated were obtained 
from a surface network for the period March–April of 2016, a period of one of the worst air quality crisis in recent 
history of the region. In a first series of experiments, the spatial length scale of the covariance localization and the 
temporal length scale of the stochastic model for the emission uncertainty were calibrated to optimize the 
assimilation system. The calibrated system was then used in a series of assimilation experiments, where simu
lation of particulate matter concentrations was strongly improved during the assimilation period, which also 
improved the ability to accurately forecast PM10 and PM2.5 concentrations over a period of several days.   

1. Introduction 

The current exponential growth in world population heightens the 
importance of public health issues related to air quality (Akimoto, 2003; 
Gurjar et al., 2008). In developing countries, decision makers must cope 
with the environmental demands of expanding and overpopulated urban 
centers. Short term air quality forecasts and long term mitigation stra
tegies for these centers are usually based on specialized assessments of 
particulate matter dynamics (Bell et al., 2011; Sallis et al., 2016). The 
Aburr�a Valley houses the city of Medellín and its neighboring munici
palities, constituting the second most populous urban agglomeration in 
Colombia, and the third densest in the world. The valley traces the 
course of the Medellín River along 60 km of a deep mountain canyon 
that ranges in width between 3 and 10 km, with an elevation range of 

1300–1750 m.a.s.l. From Northeast to South, and a height difference of 
up to 1800 m from the valley bottom to the canyon rim. 

Air quality conditions deteriorate severely within the Aburr�a Valley 
around the time of the arrival of the Intertropical Convergence Zone 
(March–April, and with lower intensity in October–November). During 
these periods, the atmospheric boundary layer persists below the rim of 
the canyon throughout the whole day, thus trapping the urban atmo
spheric contaminants within the lower atmosphere (Jim�enez, 2016). 
Resulting concentrations of particulate matter below 10 μm (PM10) and 
2.5 μm (PM2.5) remain at levels considered hazardous for the general 
population. 

Understanding local and regional transport dynamics of atmospheric 
particulate matter thus becomes a top priority for urban valleys in the 
northern Andes. This efforts will enable the development of reliable air 
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quality forecasting systems for the Aburr�a Valley (and similar locations) 
and strengthen decision making. In that vein, Chemical Transport 
Models (CTM) represent invaluable tools in understanding the dynamics 
of atmospheric contaminants, and as such have been widely used in 
monitoring air quality (Thunis et al., 2016; Lateb et al., 2016). In 
Colombia, studies have focused on the development of emission in
ventories and the characterization of pollutants (Toro et al., 2005, 2006; 
Zarate et al., 2007; Nedbor-Gross et al., 2018; Pach�on et al., 2018). To 
date, however, the Colombian territory still lacks studies of data 
assimilation in CTM. 

Previous atmospheric modelling efforts in the northern Andes have 
applied the Weather Research and Forecasting (WRF) model with its 
atmospheric chemistry module (WRF-CHEM), in conjunction with the 
EDGAR (Emissions Database for Global Atmospheric Research) global 
emissions inventory to simulate the behavior of PM10 over the Bogot�a 
metropolitan area (Kumar et al., 2016b). In this case, results persistently 
underestimated by an order of magnitude the PM10 concentrations 
relative to the available measurements. The model WRF-CHEM has also 
been applied to study the behaviour of O3 over the medium-size, 
mountain city of Manizales (Gonzalez et al., 2018). This work used 
high-resolution (1 km by 1 km) simulations to compare the performance 
of the model in two different emissions scenarios, using the EDGAR 
emission inventory and a high-resolution emission inventory previously 
developed (Gonzalez et al., 2017). The work showed a considerable 
improvement of the model under the high-resolution emissions 
inventory. 

This study uses simulations of LOTOS-EUROS (LE) chemistry trans
port model (CTM) for studying the atmospheric contaminant dynamics 
within the Aburr�a valley, spanning a set of 10 municipalities including 
the city of Medellín. LE is equipped with several Ensemble-based data 
assimilation applications focused in the reanalysis and forecasting of 
gasses over Europe (Manders et al., 2017). In (Barbu et al., 2009) the 
EnKF is used with the covariance localization technique for assimilating 
ground based observations to represent the dynamics of SO4 and SO2 
over the European continent. In their work, two different sources of 
uncertainty were studied, the reaction rate in the production of SO4 from 
SO2 and the emissions of SO2 and SO4. The uncertainty was modelled as 
a colored noise process and estimated following the method presented in 
(Heemink and Segers, 2002) (explained in detail in Section 2.2). In the 
work of (Barbu et al., 2009) they concluded that by improving the error 
uncertainty representation, the emissions uncertainty and reaction rate 
uncertainty, the performance of the data assimilation was enhanced. 

In (van Velzen and Segers, 2010), the performance of the data 
assimilation software package COSTA was evaluated with a 
LOTOS-EUROS application for a number of ensemble-based methods 
such as EnKF (without localization), ensemble square root filter (EnSRF) 
(Whitaker and Hamill, 2002), Complementary Orthogonal subspace 
Filter For Efficient Ensembles (COFFEE) (Heemink et al., 2001) and the 
RRSQRT Kalman filter (Verlaan and Heemink, 1997). The model un
certainty was prescribed for emissions originating from different coun
tries in the European domain. 

A scheme of data assimilation using LOTOS-EUROS and a network of 
ground base sensor over Europe of O3 is presented in (Curier et al., 
2012). A colored noise process was used to model the uncertainty in the 
NOx and VOC emissions, the O3 deposition rate and the exchange of O3 
between the troposphere and the stratosphere. The model performance 
and the quality of the forecasts generated improved significantly with 
data assimilation using the estimated emission factors. 

Observations of particulate material are available from Sistema de 
Alerta Temprana del Valle de Aburr�a (SIATA), a ground-based sensor 
network with stations along the valley. A preliminary exercise is per
formed on assimilation of these observations within the simulations, and 
evaluating the forecast potential of this system. From the scientific point 
of view, this implementation represents a challenge due to the different 
sources of uncertainty present. The physical conditions of the region of 
interest such as the topography and the size of the valley demand an 

extra effort to conduct a regional high-resolution model simulation. 
Currently model inputs (emission inventory and meteorology) are not 
freely available with the desired resolution and quality, increasing the 
uncertainty present in the experiments. The results of the experiment 
suggest that the simulation and assimilation system is able to describe 
the dynamics of atmospheric pollutants in Medellín rather well, 
considering that the above mentioned issues remain challenging. 

This paper is organized as follows. In Section 2 we present the ma
terials and methods, including the theoretical framework for the 
ensemble-based data assimilation technique and the covariance locali
zation that was used for improving the model results. Section 2.1 in
troduces the LE model and describes its main features. Section 3 presents 
the experimental set up, and the data assimilation calibration with 
different radii for covariance localization, and several factors for the 
stochastic processes in the LE model. It also presents the observation 
error covariance matrix estimation from ground-based sensor network 
data. Section 4 presents the main results of the paper in terms of 
investigating the ability to forecast particulate matter concentrations 
over a few days. Section 5 offers some concluding remarks and outlines 
the needed future work. 

2. Ensemble-based data assimilation of the LOTOS-EUROS model 

This section will briefly introduce the theoretical elements for data 
assimilation in the LE model, defining the Ensemble Kalman Filter, the 
covariance localization, and the stochastic process used for modelling 
emission corrections. All these elements play a fundamental role in the 
data assimilation strategy. 

2.1. The LOTOS-EUROS model 

The chemical transport model that is used to simulate atmospheric 
concentrations of pollutants is the LOTOS-EUROS model (Manders et al., 
2017). The model computes concentrations of trace gasses and aerosols 
in three dimensions for the lower parts of the atmosphere: the boundary 
layer and (part of) the free troposphere. The simulated trace gasses 
include ozone, nitrogen and sulphuric oxides, and hydrocarbons; aero
sols include primary matter, secondary inorganic aerosol, elemental and 
organic carbon, sea-salt, and dust. There is the possibility to calculate 
secondary organic aerosol with a 1-D VBS scheme. (Sauter et al., 2012; 
Manders et al., 2017). The LOTOS-EUROS model has been used for air 
quality studies in different projects around the world (Manders et al., 
2017), demonstrating the adaptability of the model for different regions. 

In the following section, the dynamic time step of the LOTOS-EUROS 
model will be denoted by: 

ck¼MLEðtk; tk� 1; ck� 1;…Þ (1) 

In here, the state vector ck contains the concentrations of all trace 
gases and aerosols in each cell of the three dimensional grid valid for 
time tk. The model operator MLE computes the state at time tk from the 
concentrations at tk� 1, and using the model input which is yet not further 
specified; note that in following equations some arguments of MLE might 
be omitted to simplify notations. The processes included in the model 
operator include three dimensional transport by wind, vertical diffusion 
due to turbulence, entrainment and detrainment by changing boundary 
layer heights, emissions from anthropogenic and biogenic sources, 
chemical reactions, aerosol physics, and dry and wet deposition. The 
gas-phase chemistry is a condensed version of CBM-IV proposed in 
(Manders-Groot et al., 2016) and for secondary inorganic chemistry 
Isorropia II (Fountoukis and Nenes, 2007) is used. The default meteo
rology of the model is 3-hourly ECMWF short-term forecast, but the 
models has also been rum with meteorologival input from WRF and 
HARMONIE, and has been coupled semi-online to the regional climate 
model RACMO2 (Manders et al., 2017). 

S. Lopez-Restrepo et al.                                                                                                                                                                                                                        



Atmospheric Environment 232 (2020) 117507

3

2.2. Stochastic and uncertainty representation 

For implementation of the data assimilation algorithm a stochastic 
representation of the model uncertainty is needed. A major source of 
uncertainty are the emissions, which might in reality differ greatly from 
the inventory in both space and time. The emissions that are used in the 
model operator are therefore modelled as a stochastic process using a 
randomly varying deviation factor: 

bek ¼ ek ð 1 þ δek Þ (2) 

In here, ek is the nominal emission from the emission inventory.The 
emission deviation is modelled as an autoregressive model of order one 
(AR-1), following the structure of a colored noise process (Jazwinski, 
1970): 

δek ¼αk δek� 1 þ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � α2
p

wk (3)  

where wk is a white noise process with zero mean and unity standard 
deviation: 

wk ​ e ​ Nð0; 1Þ (4) 

Over an infinite number of samples, the stochastic factors are drawn 
out of a normal distribution with zero mean and standard deviation σ. 
The temporal correlation coefficient αk 2 ½0;1� is used to describe the 
temporal variation, where the value should be set between two ex
tremes: for α ¼ 0, the deviation is pure white noise with completely 
different values for every sample; for α ¼ 1 there is no temporal varia
tion at all and the deviation factor is a single sample out of the normal 
distribution. In this study the correlation parameter is described using a 
temporal length scale τ following (Barbu et al., 2009): 

αk ¼ expð � jtk � tk� 1j = τÞ (5) 

A stochastic model state is formed by augmenting the state vector (1) 
with the correction factor δe: 
�

ck
δek

�

¼

�
MLEðck� 1; δek� 1Þ

αk δek� 1

�

þ

�
0
σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � α2

p
�

wk (6)  

or simply: 

xk ¼Mðxk� 1Þ þ G wk� 1 (7)  

With the augmented vector (6), it is possible to apply a sequential data 
assimilation scheme to estimate both the state and the emission 
correction factor. The non-linear operator M propagates the augmented 
state vector x in time, while G distributes the stochastic forcing wk over 
the elements of the state. The description of the uncertainty sources and 
the stochastic model is presented in Section 3. 

2.3. Ensemble Kalman Filter 

The Ensemble Kalman filter (EnKF) is the most frequently used 
ensemble-based data assimilation method (Evensen, 2003). The EnKF is 
a Monte Carlo ensemble method, based on the representation of the 
probability density of the state estimates in an ensemble of N states: 

ξð1Þ; ξð2Þ;…; ξðNÞ (8) 

Each ensemble member is assumed to be a single sample out of a 
distribution of the true state (Fu, 2017). 

The EnKF is initialized by generating a random ensemble ξaðiÞ
0 to 

represent the uncertainty in the initial condition x0. Then, the forecast 
step of the EnKF propagates each ensemble member in time using the 
state-space operator from Eq. (7) and a random forcing: 

ξf ðiÞ
k ¼M

�
ξaðiÞ

k� 1
�
þ G wðiÞk� 1 (9)  

where ξfðiÞ
k is the i � th member of the forecast ensemble at time tk. The 

forecast ensemble describes a stochastic distribution with mean and 
covariance respectively: 

xf
k ¼

1
N
XN

i¼1
ξf ðiÞ

k (10)  

Pf
k ¼
h
Lf

k

�
Lf

k

�T
i.
ðN � 1Þ (11)  

where the matrix L is formed by deviations of the ensemble members 
from the mean: 

Lf
k¼
�
ξf ð1Þ

k � xf
k;…; ξf ðNÞ

k � xf
k

�
(12) 

When the observations are available, the EnKF uses them to update 
the forecast ensemble into an analysis ensemble, which has a smaller 
covariance since it incorporates observation information. The vector 
with observation values is described as a linear mapping from the state 
vector plus a random error: 

:yk ¼Hk xk þ vk; vkeNð0;RkÞ (13) 

The observation operator H describes how the observations are 
sampled from the concentration fields in the state. The observation 
representation error vk describes the difference between the observa
tions and the sampling, which are present due to both instrumental er
rors but also due to sampling errors. In this application the sampling 
errors are for example present since the state describes concentrations as 
averages in (large) grid boxes, while the observations concern point 
observations. The vectors vk are assumed to be samples out of a random 
distribution with zero mean and covariance Rk; how Rk is parameterized 
is described in section 3. 

The analysis update of the ensemble members is proportional to the 
differences between the observations yt and the observation simulation 
HkξfðiÞ

k from the ensemble member following: 

ξaðiÞ
k ¼ ξf ðiÞ

k þ Kk
�

yk � Hkξf ðiÞ
k þ vðiÞk

�
(14) 

The difference between observations and simulations is distributed 
over the state elements using a matrix called the Kalman gain: 

Kk ¼Pf
kHT

k

�
HkPf

kHT
k þ Rk

�� 1 (15) 

The Kalman gain is defined such that the sample covariance of the 
analysis ensemble is minimal with respect to l2 matrix norm (Asch et al., 
2016). Note that the sample covariance Pf

k cannot be computed in this 
application given its large size ðeO ð106Þ � O ð106ÞÞ. However, for the 
actual implementation it is sufficient to store only the factorization L 
from Eq. (12). 

2.4. Covariance localization 

Due to the approximation of the state space covariance by a finite 
number of ensemble members, it is unavoidable the appearance of 
spurious correlations between elements of the state. These spurious 
correlations can be removed by a procedure called localization (Ott 
et al., 2004). The localization method used in this work is the covariance 
localization (Houtekamer and Mitchell, 2001). The covariance localiza
tion or Schur localization, focuses on the forecast error covariance ma
trix, cutting off longer range correlations in the error covariances at a 
specified distance (Houtekamer and Mitchell, 2001; Petrie, 2008). The 
pointwise multiplication is called a Schur product and denoted by ∘: 
�
f ∘Pf �

i;j ¼
�
Pf �

i;j½f �i;j (16) 

The Schur product theorem ensures that if f and Pf are positive 
semidefinite, then the Schur product, f∘Pf , is positive semidefinite. A 
cutoff function would be defined by r 2 Rþ→Gðr =ρÞ, where r is the 
Euclidean distance between two state members and ρ is a length scaling 
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called the localization radius (Sakov and Bertino, 2011). The localiza
tion radius is defined such that beyond this the correlation reduces from 
1 and at a distance of more than 3:5ρ the correlation reduces to zero 
(Petrie, 2008). The cutoff function utilized in this work has the following 
form: 

fi;j¼ exp
�
� 0:5

�
ri;j
�

ρ
�2
�

(17) 

This regularized covariance matrix f∘Pf is used in the EnKF analysis 
as well as in the generation of the posterior ensemble of perturbations, as 
a replacement for Pf : 

K¼
�
f ∘ Pf �HT�H

�
f ∘Pf �HT þ R

�� 1 

An analysis of the DA scheme performance with different ρ values is 
presented in Section 3. 

2.5. Performance metrics 

In this work, the performance of the LOTOS-EUROS simulations and 
the assimilation scheme were calculated by comparison with a subset of 
the ground observations not used in the assimilation. As described in 
Section 3.2, the collection of observations available in this study is 
rather small, and therefore only two time series were used to quantify 
the performance. Three metrics were computed to compare the simu
lations (assimilations) with the validation data; in addition, diurnal 
cycles were also compared. 

The mean fractional bias (MFB) normalizes the bias for each model- 
observation pair using division by the average of the model and obser
vation before taking the sample mean: 

MFB¼
2
M
XM

i¼1

ðHðcÞÞi � yi

ðHðcÞÞi þ yi
(18)  

with M the number of elements in the set. In this application, M equals 
the number of observations from all valid monitoring station data for the 
comparison time period of interest. The simulation HðcÞi of an obser
vation yi is taken either from a model output, or from the ensemble mean 
in case of an assimilation run. The MFB ranges from � 2 to þ 2, and has 
the advantage preventing the bias from being dominated by few high 
value observations/simulation pairs in case of strong variations, for 
example due to a strong diurnal cycle (Boylan and Russell, 2006). 

The root mean square error (RMSE) represents the sample standard 
deviation of the differences between predicted values and observed 
values (equation (19)). The RMSE penalizes a high variance as it gives 
errors with larger absolute values more weight than errors with smaller 
absolute values (Chai and Draxler, 2014): 

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M
XM

i¼1
ððHcÞi � yiÞ

2

v
u
u
t (19) 

The last metric is the correlation coefficient (Corr), which shows how 
the values from one data set (simulations) relate to value of a second 
data set (observations). A high value (approaching þ1.0) is a strong 
direct relationship, values near 0.5 are considered moderate and values 
below 0.3 are considered to show weak relationships. A low negative 
value (approaching � 1.0) is a strong inverse relationship, and values 
near 0.0 indicate little, if any, relationship. The correlation coefficient is 
calculated following (Yu et al., 2006): 

Corr¼
PM

i¼1HðcÞi � ðHðcÞiÞðyi � yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

i¼1

�
c
�
ðcÞðcÞi � ðHðcÞiÞ

2
q

​
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

i¼1ðyi � yÞ2
q (20)  

where the overline denotes a sample mean over the M elements of the 
validation set. 

3. Calibration of the data assimilation system 

This section presents the results obtained from the data assimilation 
experiments with the LE model during a two-week episode. Simulations 
were conducted with the LE model in a nested domain configuration as 
described in Section 3.1. Default initial and boundary conditions were 
used, and data for assimilation was obtained and processed as described 
in Section 3.2. The goal of the experiments was to obtain insight into the 
sensitivity of the assimilation system for the configuration parameters 
such as the temporal correlation of the emission uncertainty (Section 
3.5), the localization length scale (Section 3.4), and the observation 
representation errors (Section 3.6). Also the impact of other parameters 
such as the standard deviation of the parameter uncertainty was eval
uated, but for the chosen configuration their impact was minor. To see 
the impact of each configuration parameter, these are calibrated and 
analyzed independently. Based on the results, the best values for the 
assimilation parameters were selected for use in subsequent assimilation 
experiments. A series of emission deviation factors were obtained during 
the two-week episode using the calibrated assimilation system and used 
as nominal emissions for the next two-week test period. The forecast 
skill of the calibrated assimilation system was evaluated throughout the 
episode as described in Section 4. The summarized experimental setup is 
presented in Fig. 1. 

3.1. The LOTOS-EUROS model setup for Aburr�a Valley 

Simulations were conducted with the LE model, adopting a nested 
domain configuration as depicted in Fig. 2 and detailed in Table 1. Four 
nested domains were used to have a smooth transition on the dynamics 
from the regional scales (Caribbean and Northern part of South Amer
ica) to the local conditions of the Aburr�a Valley. The first Domain (D1) 
spans from the coast of Nicaragua in the West, to the Caribbean Dutch 
Islands and Venezuela in the East; model resolution was set to 0:27�
(about 28 km). For this domain, meteorological data from ECMWF was 
used at a resolution of 0.14�; also the orography was obtained from this 
data set. The inner domain D2 is centered over the valley and includes 
the Northwest part of Colombia, encompassing most of the Colombian 
Andes; model resolution was set to 0.09�(about 9 km). For this and the 
following inner domains, meteorological data were obtained from 
ECMWF at 0.07�resolution, while for the elevation model was derived 
from the Global Multi Resolution Terrain Elevation Data set 
(GMTED2010) (Danielson and Gesch, 2011) at a resolution of 0.002�

(approx. 220 m). The third inner domain D3 includes the department of 
Antioquia, at a model resolution of 0.03�(about 3 km). The innermost 
domain D4, the focus of the present study, includes primarily the region 
of the Aburr�a Valley using model resolution of 0:01� (about 1 km). 

The data sets used in the model are summarized in Table 2. For each 
of the domains, anthropogenic emissions were obtained from the global 
EDGAR inventory (Petrescu et al., 2012). Although previous works have 
shown that there is a considerable gap in the information in EDGAR for 
the Colombian territory, this database is the only one available with all 
the necessary species to run the model in the selected domains (Gonzalez 
et al., 2017; Pach�on et al., 2018; Nedbor-Gross et al., 2018). The reso
lution of the EDGAR database is 10� 10 km, which is approximately 10 
times coarser than the resolution of the innermost domain. The low 
resolution of the emission data compared to the high resolution of the 
model simulation can produce an unrealistic spatial distribution of 
emissions and concentrations. This emphasizes the importance of 
considering emissions as a major source of uncertainty for the DA sys
tem. The behavior of our data assimilation scheme is studied using EnKF 
with 15 ensemble members (N ¼ 15 in eqns. (8)-12) in Section 2.3) for 
both periods of assimilation. Previous experiments in related works and 
using LOTOS-EUROS model showed that using an greater ensemble 
members the performance of the algorithm did not increase significantly 
to justify the additional computational cost and 12–15 ensemble mem
bers are sufficient to describe the local covariance and to produce 
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assimilation with stable results Barbu et al. (2009); Curier et al. (2012). 

3.2. Ground based data for assimilation 

The Sistema de Alerta Temprana del Valle de Aburr�a (SIATA) network 
of sensors provides high quality measurements for different air 

pollutants in the atmosphere over the Aburr�a Valley region, monitoring 
species such as O3, SO2, PM10, PM2.5 and PM1. The network is distrib
uted in the five most populated Aburr�a Valley’s municipality, with the 
majority of the measuring stations located in the city of Medellín. The 
distribution of the observation sites is shown in Fig. 3. 

In this work, only PM10 and PM2.5 measurements were used for the 

Fig. 1. Graphic representation of the experimental setup.  

Fig. 2. Four nested domains for Metropolitan Area of Aburra Valley assesment.  
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assimilation experiments, obtained from 8 PM10 stations, 3 PM2.5 sta
tions, and 1 combined station on a total of 12 observation sites. The 
observation time series have an hourly temporal resolution, with full 
coverage for most days. Measurements for one station for each species 
(represented with a star in Fig. 3) were used for validation, taking two 
stations with a considerable distance between them to obtain a accept
able spatial representation, namely Universidad San Buenaventura 
(located within the city of Medellín, near the geographic center of the 
valley; station 37 in Fig. 3) for PM10, and Casa de la Justicia Itagui 
(Southwest of the valley, in a mostly industrial zone; station 28 in Fig. 3) 
for PM2.5. During air quality crises, these stations tend to reach some of 
the highest values measured during the year. The metrics from section 
2.5 are calculated only over these two stations. 

3.3. Standard model run results 

In this section we described the simulated PM10 and PM2.5 concen
tration for the two-week period between 31-March-2016 and 13-April- 

2016 using the model parameterization shown in Table 2 for domain 
D4. The evaluation against the validation stations are presented in 
Figs. 4 and 5. All the figures in this work are presented using the local 
time zone UTC-5. The statistical errors are shown in Table 3. 

It is evident that the model presents a considerable underestimation 
of the particulate matter concentration (around of 20 fold). These results 
are similar to the previous works of CTM implementation in Colombian 
cities (Kumar et al., 2016a). The causes of this gap can be attributed to 
two important factors: emissions and meteorology. As mentioned 
before, the EDGAR inventory is inaccurate over the Colombian territory 
(Gonzalez et al., 2017) and the resolution is too coarse for the 
high-resolution model implementation. For these reasons, the emission 
of precursors and the particulate matter are considered as uncertainty 
parameters to be estimated in the DA system. The version of EDGAR 
used in this work (v4.2) only includes total particulate matter emissions, 
which in the model are distributed over the fine and coarse aerosol 
tracers. Therefore, only a single emission deviation field was used that 
was applied to all particulate matter emissions. The capability of the LE 
to use the last EDGAR version (v4.3) that differentiates between PM2.5 
and PM10 emissions is an upcoming feature of the model. NH3 and SOx 
emissions were estimated as precursors of secondary particulate matter. 
The mechanics of particle transport and the behavior of the boundary 
layer in the Aburr�a Valley and its implications for concentration levels 
are not yet clear, nor is there a reliable high resolution meteorology for 
the region of interest: For this reason, we do not include meteorology as 
a source of uncertainty to estimate in the DA system. 

3.4. Calibration of covariance localization radius 

The covariance localization as described in section 2.4 requires the 
definition of a localization radius ρ. In summary, the larger the radius 
chosen, the more observations are used to analyze a single element of 
the state. In this application, the state consists of concentrations and 
emission deviation factors, and the localization radius therefore has an 
impact on both. The influence of this parameter was evaluated by 
running the assimilation system with different values for ρ: 5, 10, 20, 
and 30 km. The temporal correlation length was fixed in τ ¼ 3 days for 
all the experiments. Fig. 6 shows maps of the average value over the 2 
week assimilation window emission deviation factor δe. 

Figs. 7 and 8 show time series of the average diurnal cycle of 

Table 1 
Nested domain specifications.  

Domain Longitude Latitude Cell size 

D1 84�W-60�W 8.5�S-18�N 0.27�� 0.27�

D2 80.5�W-70�W 2�N-11�N 0.09�� 0.09�

D3 77.2�W-73.9�W 5.2�N-8.9�N 0.03�� 0.03�

D4 76�W-75�W 5.7�N-6.8�N 0.01�� 0.01�

Table 2 
Data set used in the D4 domain.  

Period 31-March-2016 to 25-April-2016 

Metereology ECMWF; Temp.res: 3h; spat.res: 0:07∘ � 0:07∘  

Initial and boundary LOTOS-EUROS (D3). Temp.res: 1h. 
conditions Spat.Res: 0:03∘ � 0:03∘  

Anthropogenic emissions EDGAR v4.2. Spat.res:10 km � 10 km  
Biogenic emissions MEGAN Spat.res:10 km � 10 km  
Fire emissions MACC/CAMS GFAS Spat.res:10 km � 10 km  
Landuse GLC2000. Spat.res:1 km � 1 km  
Orography GMTED2010. Spat.res: 0.002�� 0.002�

Fig. 3. SIATA sensor network for PM10 and PM2.5. The stars represent observation points for validation and the circles represent observations points for assimilation.  
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particulate matter concentrations in the two validation sites for the 
assimilation period. 

For small localization radii, the concentrations in the validation sites 
were less influenced by the analysis since the number of analyzed ob
servations was limited for these locations. If the localization radius in
creases, the simulations become more in line with the observations, 
although even for a ρ of 30 km the simulations are lower than what is 
observed. In both stations, the assimilated model progressively ap
proaches the observations towards the end of the assimilation window. 
The day cycles for both species show that the temporal dynamics are not 
significantly affected by the different values of ρ and the change is 
mostly reflected in the magnitude. For the available sensor network, the 
value of ρ ¼ 30 km presented the best overall performance for both 
species. As shown in Tables 4–5, the improvement of the error statistics 

related to the absolute error (MFB and RMSE) was more significant than 
the change in correlation factor (CF). The lack of accurate emissions 
inventories seems to have had a similar impact on simulations in all sites 
of the network, and therefore the best performance was obtained by 
changing emissions in the same way over the entire domain. It is ex
pected that when using a sensor network with a higher spatial density, 
smaller values for ρ will become beneficial. 

3.5. Calibration of temporal correlation length 

With a similar experiment as for the covariance localization, the 
temporal correlation parameter τ of the emission uncertainty described 
in section 2.2 was calibrated. The uncertainty on the emissions was 
modelled via equation (3). To evaluate the impact of the temporal cor
relation parameter, the assimilation experiment was performed with τ 
set to either 1, 2, 3, or 5 days. The localization radius was fixed in ρ ¼ 30 
km for all the experiments. 

Figs. 9 and 10 show the time series and average diurnal cycles of 
PM10 or PM2.5 in the two validation sites, obtained from the observa
tions, a standard model run, and analyzed ensemble means from 
assimilation experiments with different τ. Compared with the results 
shown in Figs. 7 and 8 for variation of the localization radius, the impact 
of changes in the temporal correlation length are rather small. The 

Fig. 4. Time series and diurnal cycle of PM10 in validation site 37 for a standard model Free-Run. The time axis corresponds with the local time zone UTC-5.  

Fig. 5. Time series and diurnal cycle of PM2.5 in validation site 28 for a standard model Free-Run. The time axis corresponds to the local time (UTC-5).  

Table 3 
Statistical error evaluation for PM10 and PM2.5 via MFB, RMSE and CF for model 
standard Free-Run.  

Species MFB RMSE CF 

PM10 � 1.5 49.6369 0.3287 
PM2.5 � 1.6 46.2302 0.3318  
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assimilation results hardly differ from each other when τ changes, 
indicating that in the current application this parameter is of minor 
importance. 

Tables 6 and 7 show the values of the metrics defined in section 2.5 
for the assimilation experiments with different τ. The MFB, RMSE and 
CF for both localization radius and correlation length showed good 
behavior in estimations for the PM10 and PM2.5. Variations in the local 

analysis radius tended to diminish the MFB, RMSE and CF for the PM10 
and PM2.5 estimates in Figs. 6 and 7. The increase in correlation time 
does not seem to have improved statistical measurements and in general 
presents a smaller impact in the data assimilation performance than the 
localization radius. 

Fig. 6. Maps of mean emission deviation factors for particle matter emissions during assimilation experiments with different localization radii.  

Fig. 7. Time series and diurnal cycle of PM10 in validation site 37. Dots denote observations, dashed black lines are simulations by the standard model, and solid lines 
are analyzed ensemble means from the assimilation for different localization radii. The diurnal cycles were obtained from 13 samples for each hour. The shadows and 
the bars represent the standard deviation of the 13 samples. The time axis corresponds with the local time zone UTC-5. 
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3.6. Calibration of observation error covariance 

Since the observation network described in section 3.2 has not been 
previously used for a data assimilation experiment, no suitable formu
lation for the observation error representation covariance was present 
yet. We implemented the method proposed in (Desroziers et al., 2005) to 
estimate the observation error covariance matrix R. Desroziers et al. 
(2005) showed that the relation: 

E
h
do

a

�
do

f

�Ti
¼R (21)  

is valid if the matrices specified in 

HK¼HPf HT �HPf HT þ R
�� 1 (22)  

are the true covariances for background and observation error. Here K is 
the Kalman gain, do

f is the difference between observations and forecast 
state in observation space and do

a is the difference between observations 
and analysis state in observation space. One application of this rela
tionship is that it can be used to diagnose the observation error variance 
after the analysis cycle has been completed (Li et al., 2009). In practice, 

Fig. 8. Time series and diurnal cycle of PM2.5 in validation site 28. Lines as in Fig. 7.  

Table 4 
Statistical error evaluation for PM10 via MFB, RMSE and CF for ρ variation.  

ρ MFB RMSE CF 

5 km � 1.0718 49.6369 0.3287 
10 km � 0.9220 46.2302 0.3318 
15 km � 0.8564 44.8106 0.3273 
30 km � 0.7815 43.4758 0.3082  

Table 5 
Statistical error evaluation for PM2.5 via MFB, RMSE and CF for ρ variation.  

ρ MFB RMSE CF 

5 km � 0.7264 25.7513 0.4118 
10 km � 0.5232 23.1410 0.4204 
15 km � 0.4456 22.2336 0.4171 
30 km � 0.3731 21.8653 0.4019  

Fig. 9. Time series and diurnal cycle of PM10 in validation site 37. Dots denote observations, dashed black lines are simulations by the standard model, and solid lines 
are analyzed ensemble means from the assimilation for different temporal correlation lengths. The diurnal cycles were obtained from 13 samples for each hour. The 
shadows and the bars represent the standard deviation of the 13 samples. 

S. Lopez-Restrepo et al.                                                                                                                                                                                                                        



Atmospheric Environment 232 (2020) 117507

10

the requirements for the relationship in Eq. (22) are never fully satisfied 
because the background covariance matrix is only an approximation of 
the real one. Nevertheless, the relationship could be used to obtain a 
useful first estimate of the observation error covariance matrix. For any 
subset of observations i with M observations, it is possible to compute an 
estimate of the error variance 

�
bσ2

o

�

i ¼

�
do

a

�T
i

�
do

f

�

i

M
(23)  

¼
XM

j¼1

�
yj � HðxaÞj

��
yj � HðxfÞj

�

M  

where bσ2
o correspond with the diagonal of the matrix R. 

The assimilation period from March 31 through April 13 was again 
used for calibration, in this case of R. As an initial estimate the matrix R 
was filled with random Gaussian numbers to make the result indepen
dent of the initial value (Desroziers et al., 2005; Li et al., 2009). 

For the subsequent experiment (test period, April 13–25), the off-line 
estimated matrix was used in the assimilation exercise. Once the DA 
scheme was calibrated, the estimated values for emissions correction 
factors were applied to the emissions inventory in EDGAR V4.2 and 
taken as the nominal emissions inventory for the test period. The new 
DA iteration was done using the estimated values for R, the radius size in 

the covariance localization scheme and τ. 

4. Emissions estimation and particulate matter forecasting 

A crucial requirement for an air quality simulation and assimilation 
system to contribute to the decision making process is that it be able to 
forecast pollution dynamics a few days in advance. The ability of the 
calibrated assimilation system to forecast concentrations of PM10 and 
PM2.5 in the short term was evaluated during forecast experiments. Both 
weekend and weekday forecast starting points were assessed. 

4.1. Model data assimilation with a calibrated scheme 

Once the calibration process was completed, a new model run was 
conducted using the corrected emissions as nominal emission values, 
and a new 12-day data assimilation exercise was performed using the 
chosen fixed radius (for local analysis), time correlation length τ and the 
estimated observation error covariance R as was shown in Fig. 1. In this 
second period the emissions were again estimated, but starting for the 
estimated emissions in the first period. Thus, the emissions were upda
ted twice. It is important to note that experiments with other combi
nations of ρ and τ were performed but, in all the cases the results using 
the selected values in the previous section presented the best perfor
mance.The comparison between the nominal emissions of PM10 (from 
EDGAR data base) used in the first experiments and the estimated 
emissions of PM10 used as nominal emissions for this new model runs is 
presented in Fig. 11. Beyond the clear different in terms of magnitude 
and resolution between the estimated emissions and EDGAR that allow a 
better spacial representation of the emissions, the location of the hot
spots in EDGAR appears in rural zones of the valley with minimal in
fluence of human activity. The estimated emissions try to correct this 
behavior centring most of the emission in the urban zone of the valley, 
giving a more realistic representation. 

The results of the assimilation for PM10 follow closely the measure
ments from validation station Universidad San Buenaventura (center of 
the valley) from April 13 at 19:00 UTC-5 through April 25 at 11:00 UTC- 
5 (see Fig. 12). The peak near 18–00:00 (and in general almost all the 
day close to that hour) can be caused by an incorrect time profile in the 
emissions factors from EDGAR database, that does not reflect the real 
temporal dynamics of the emissions. Additionally, the meteorological 
fields can cause and increment of the concentrations levels. Note that the 
daily cycle for the assimilated model remains closer to the observations 
than the model without assimilation and with the previously estimated 
emissions. 

Fig. 10. Time series and diurnal cycle of PM2.5 in validation site 28. Lines as in Fig. 9.  

Table 6 
Statistical error evaluation for PM10 via MFB, RMSE and CF for both localization 
radius variation and correlation length.  

τ MFB RMSE CF 

1 day � 0.6353 40.8918 0.2603 
2 day � 0.7815 43.4758 0.3082 
3 day � 0.7096 42.1953 0.2834 
5 day � 0.6832 41.6843 0.2802  

Table 7 
Statistical error evaluation for PM2.5 via MFB, RMSE and CF for both localization 
radius variation and correlation length.  

τ MFB RMSE CF 

1 day � 0.2183 38.0219 0.3455 
2 day � 0.3731 21.8252 0.4019 
3 day � 0.2854 21.8653 0.3774 
5 day � 0.2513 21.4967 0.3746  
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Fig. 11. Comparison between EDGAR PM10 and estimated PM10 emissions.  

Fig. 12. PM10 validation for the second DA 
iteration. Estimated emissions were used as 
nominal emissions, the estimated observa
tion error covariance is used in the assimi
lation step. Red points are observations, solid 
black line is the free run model and the solid 
blue line is the analysis step for the assimi
lated model. The diurnal cycles were ob
tained from 13 samples for each hour. The 
shadows and the bars represent the standard 
deviation of the 13 samples. The time axis 
corresponds with the local time zone UTC-5. 
(For interpretation of the references to color 
in this figure legend, the reader is referred to 
the Web version of this article.)   

Fig. 13. PM2.5 validation for the second DA 
iteration. Estimated emissions were used as 
nominal emissions, the estimated observa
tion error covariance was used in the assim
ilation step. Red points are observations, 
solid black line the free run model and solid 
blue line the analysis step for the assimilated 
model. The diurnal cycles were obtained 
from 13 samples for each hour. The shadows 
and the bars represent the standard deviation 
of the 13 samples. The time axis corresponds 
with the local time zone UTC-5. (For inter
pretation of the references to color in this 
figure legend, the reader is referred to the 
Web version of this article.)   
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Fig. 13 shows a similar comparison for the PM2.5 station. The model 
in a free run tends to over estimate the PM2.5 concentrations (see peaks 
in 15 April at 23:00 UTC-5, 24 April at 22:00 and 25 April at 23:00 UTC- 
5). The results of the assimilation process offer a better average esti
mation. The daily cycle of PM2.5 within the Aburr�a valley is related to 
the industrial and mobile sources emissions profile and the meteoro
logical conditions inside the valley. 

The second period of assimilation provides a good representation not 
only of the dominant dynamics, but also offer an opportunity to forecast 
taking into account the profiles of emission sources. The next section 
will address the results from forecasts for the assimilated model with 
different radii in local analysis and correlation time lengths for the 
emissions.In the Appendix is presented a validation of the model for O3 
and NO2 concentrations for the second study period. 

4.2. Forecasting PM profiles during weekdays and weekends 

Using the second assimilation period (twice estimated emissions and 
the analysis state as initial condition, see Fig. 1) three forecasts experi
ments were performed for up to three days, under the following sce
narios: i) forecast starting on a Saturday night (19:00 UTC-5), with an 
assimilation window of the nine (9) days prior; ii) forecast starting on 
Tuesday night (19:00 UTC-5), with an assimilation window of the five 
(5) days prior; and iii) as in ii), but using a localization radius of 5 km 
instead of 30 km. 

Three different inheritance schemes (propagation of data assimila
tion information into forecast) for the emission correction factors were 
compared, namely:  

1. Forecast default: Retaining only the state values from the end of the 
assimilation window. The correction factors estimated in the 
assimilation window are not used in the forecast.  

2. Forecast hourly: Starting from the state values of the end of the 
assimilation window and using the hourly profile from the last 24 h 
in the assimilation window.  

3. Forecast average: Starting from the state values of the end of the 
assimilation window and using the average state values from the 
entire assimilation window. 

For both PM species, forecasts starting on a weekend failed to reflect 
the observed dynamics. Forecasts initiating on a weekday were able, in 
general, to replicate the observed dynamics, having better performance 
in reproducing the dynamics of PM10 (Fig. 15). All three inheritance 
schemes used in the PM10 weekday forecast (Fig. 15) reproduced the 
observed dynamics, but the hourly scheme tracked the measured 

concentrations the closest. For the PM2.5 weekday forecast, again the 
hourly profile tracked the measured concentrations more closely than 
the other two during the forecast period. 

Fig. 16 presents a comparison of the forecasts for PM10 and PM2.5 
under different local analysis radii. The smaller 5 km radius for local 
analysis, does not improve either forecast. We can interpret this phe
nomenon if we look at the forecast with 30 km radius in local analysis, 
taking into account that including more sensors in the assimilation it is 
possible to improve the correction factors in emissions. Consequently, if 
the emissions correction factors are higher for the latter two weeks in 
local analysis with 30 km radius, it can reduce the real emissions at a 
higher rate than the local analysis of 5 km radius via DA. 

In order to provide quantitative measurements of forecast perfor
mance under various scenarios, the following error statistics were 
calculated and presented in Fig. 17: Mean Factoral Bias(MFB), Root 
Square Mean Error (RSME); and Correlation Factor (CF). The error 
statistics are calculated over a single forecast for each scenario and over 
the validations stations described in Fig. 3. Since there were no 
considerable changes in the error statistics between the forecast days, 
the presented values correspond to the three-day average. Only PM10 are 
presented; the behavior of PM2.5 is very similar. Weekday forecasts 
(initiating on Tuesday) under a 30 km local analysis ratio scenario, 
presented the best error statistics. Independent of the inheritance 
scheme and the localization radius, weekend forecasts performed worse 
than weekday forecasts. For weekday forecasts, scenarios with locali
zation radius of 5 km tended to perform worse than scenarios using a 
localization radius of 30 km. 

5. Conclusions 

Poor air quality is an environmental problem that many Colombian 
cities currently face. To avert the bi-annual deterioration in air quality 
due to the arrival of the Intertropical Convergence Zone, and in general 
to devise strategies to improve the quality of urban air, policy makers in 
Colombia and Northwest South America need accurate and reliable 
scientific information on atmospheric pollution dynamics for their de
cision making process. This study demonstrates that the LOTOS-EUROS 
model is suitable for use in regions of complex topography such as the 
Aburr�a Valley, and paves the way for the creation of atmospheric 
pollution forecast systems fine tuned to the region that may assist the 
stated goal. 

The use of regional, ground based atmospheric pollutant data from 
the SIATA sensor network, in data assimilation of the LOTOS-EUROS 
model via the use of the Ensemble Kalman Filter with covariance 
localization, improved the representation of PM 10 and PM2.5 dynamics 

Fig. 14. PM Forecast Starting on Saturday 19:00 UTC-5. The red points indicate observations; the dotted black line indicates the Free-Run; the solid black line shows 
the analysis of the EnKF; blue, purple and yellow lines show the forecasts under the different scenarios; vertical green line indicates the start of the forecasts. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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and the estimation of their atmospheric concentrations within the 
Aburr�a Valley. 

Calibration of the radius for local analysis, the correlation time 
length τ and the estimation of the observation covariance error matrix R, 
led to a better tuned DA scheme with improved performance, 
approaching more closely the available observations. The estimation of 
an emission correction factor via data assimilation compensated for the 
scarcity in accurate and detailed emissions inventories for the region, 
enabling more accurate simulation results. Due to the coarse resolution 

of the emission inventory, and the rather low density of the sensor 
network available for 2016 within the area of interest, a large locali
zation radius (30 km) performance better than a small radius (5 km). 

Forecast performance was time and inheritance scheme sensitive, 
demonstrating that the temporal dynamics of pollutant emissions asso
ciated with the diurnal patterns of human activity need to be taken into 
account in the development of forecast systems. Inheritance schemes 
cognizant of complex system attributes (e.g., rugged topography, 
spatially heterogeneous and highly dynamic meteorology, etc.) may 

Fig. 15. Pm forecast starting on tuesday 19:00 UTC-5. Lines as in Fig. 14.  

Fig. 16. PM Weekday Forecast Comparisons 
for Different Radii. Red points depicts the 
observations, dotted black line the Free-Run 
using a 30 km radius, dotted grey line the 
Free-Run using a 5 km radius, solid black line 
the analysis of the EnKF using a 30 km 
radius, solid grey line the analysis of the 
EnKF using a 5 km radius, and purple and 
blue lines the forecast scenarios for 30 km 
and 5 km radius, respectively. Vertical green 
line indicates the beginning of the forecast 
window. (For interpretation of the references 
to color in this figure legend, the reader is 
referred to the Web version of this article.)   

Fig. 17. PM10 Forecast Error Statistics. Blue bars represent forecasts under the default inheritance scheme. Purple bars indicate forecasts under the hourly inher
itance scheme. Yellow bars show forecasts under the average inheritance scheme. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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yield improved performance and increase the resolution and usability of 
air quality forecast systems. Further researches are needed with better 
inputs fields of the CTM as a local and more detailed emission inventory 
and meteorology with better resolution capable to represent the trans
port dynamics into the valley. Improvement of emission inventories and 
meteorological input is subject of current studies. Additionally, a data 
assimilation scheme that consider uncertainty in the meteorological 
variables and different emissions correction factors for each component 
can help to improve the presented results. 
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Appendix 

O3, NOx SO2 are crucial for the secondary aerosol formation and the PM modelling (Barbu et al., 2009; Manders et al., 2009). In this Appendix 
(Figs. 18 and 19) is shown a comparison of the model concentrations for O3 and NO2 for the second period of Data Assimilation, using the calibrated 
DA scheme and the estimated emissions (see Fig. 1). Unfortunately, there are not available data from SIATA networks to evaluate the concentrations of 
SO2 in the period of interest, and there are not others sources of quality data over the region. The Figs. 18 and 19 show that in general the LE model 
tend to underestimate the O3 and NO2 concentrations, and no all the cycles are well captured by the model. These results support the idea that a 
improvement in the emission inventory and the meteorological fields are required to improve both, the gases and the aerosol representation in the 
Aburr�a Valley.

Fig. 18. Comparison of LOTOS-EUROS O3 concentration and SIATA observations. The time axis corresponds with the local time zone UTC-5.   
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Fig. 19. Comparison of LOTOS-EUROS NO2 concentration and SIATA observations. The time axis corresponds with the local time zone UTC-5.  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.atmosenv.2020.117507. 
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