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Abstract

A user element subroutine (UEL) to be used into the commercial finite element code ABAQUS has
been developed and implemented. The subroutine is intended to treat generalized wave propagation
problems in 2D-domains and in particular wave scattering problems. It has been formulated in the
frequency domain, but fully implemented in terms of real-valued degrees of freedom as required by
ABAQUS. Results are obtained both in the frequency and time domain. The subroutine is tested
in the solution of problems related to topographic effects in earthquake engineering and in the
propagation of waves in materials with microstructure introducing dispersion. Results have been
provided in the frequency and in the time domain. The frequency domain is not only powerful from
a conceptual point of view, since it offers many insights into the physical aspects of the problem,
but it also has other advantages like:

e Easy incorporation of excitations based on plane wave assumptions.
e Simultaneous Consideration of temporal and spatial periodicity.

e Easy consideration of dispersive materials.

Keywords: Wave Propagation, Computational Elastodynamics, Finite Element Methods,
Boundary Element Methods, Seismic Waves, Periodic Materials.



Introduction

The phenomenon of wave propagation appears in many different engineering fields, e.g., electro-
magnetism, acoustics, mechanics. At the same time, computational methods have evolved to the
point, where simulation based engineering is increasingly being used by the practising engineer
in order to support lab results, improve proposed designs or even to compensate for the lack of
experimental data. In the case of mechanical waves, the subject is of interest in diverse engineering
topics like, earthquake engineering; geophysics; mechanical characterization of materials; and oil
and natural gas exploration, among others.

Although computational mechanics based techniques, allow the problem of wave propagation to
be solved with great accuracy, the existing commercial tools still pose limitations to the user, due
to different factors. For instance, commercial codes are limited in the type of available kinematic
assumptions, they only have a few constitutive material models and they are also limited in the
possible forms of excitation. These limitations have kept a lot of problems of wave propagation
within the strict realm of academics and researchers. One of the major limitations in commercial
codes is the impossibility of performing analysis in the frequency domain with enough flexibility
in the type of excitation, mainly because most commercial software don’t allow the user to pass
complex-valued information. This limitation is taken care of in this thesis.

In this work a computational tool for the simulation of generalized wave propagation problems
in the commercial finite element code ABAQUS is presented. The computational framework is
developed in the form of a user element subroutine (UEL), which is a possibility offered to the user
by commercial codes, like ABAQUS, to overcome limitations in the type of analysis implicit in the
code. This work has been motivated by a need identified within the Grupo de Mecanica Aplicada
at Universidad EAFIT to solve wave propagation problems of moderate size (e.g., in the range of
millions of degrees of freedom), when working in the particular context of earthquake engineering.

The subroutine takes advantage of the powerful simulation resources available in the commercial
code, like its pre and post-processing units and efficient solvers, allowing the analyst to simulate
a complex problem, not available in the code, but with the easiness of data input implicit in a
robust commercial software.

Although the current UEL subroutine is developed in the context of earthquake engineering, it



is general enough and straight forward to modify as required, so it can be easily extended to many
different applications and physical areas. This generality is possible, since the analysis is conducted
in the frequency domain but in terms of real algebra calculations. In this sense ABAQUS is used
as a solver for a series of generalized static problems while being unaware of the type of physical
problem being solved. The particular implementation uses the idea of generalized variables to
proceed in the frequency domain, but expressing the problem in terms of real valued functions.
The frequency domain is not only powerful from a conceptual point of view since it offers many
insights into the physical aspects of the problem, but it also has other advantages like:

e Easy incorporation of excitations based on plane wave assumptions.
e Simultaneous consideration of temporal and spatial periodicity.

e Easy consideration of dispersive materials.

Although the main objective of this thesis is the formulation and implementation of the UEL
subroutine into the commercial FEM code ABAQUS, several problems have been solved in order
to test and show the subroutine’s current capability. The following problems have been solved:

e Scattering of incident in-plane P waves by surface shapes in a micropolar solid. The scat-
tering of waves by a geometric irregularity embedded in a non-classical material model has
been studied in order to simulate a dispersive medium. For this purpose a Cosserat or
kinematically enriched material model has been numerically simulated.

e Scattering of incident in-plane P and SV elastic waves by surface scatterers. The context of
the analysis corresponds to the problem of topographic effects in earthquake engineering. A
method, based on the isolation of the diffracted part of the response has been presented and
explored, where the diffraction field is used as a digital finger print of the topographic effect.

e Study of the topographic effects in a simplified model of a sedimentary basin with a cross
section resembling the Valle de Aburrd. A domain reduction method has been explored as
a potential analysis tool to establish the connection between large geometrical or regional
topographic effects and localized mechanical effects like the ones existing in seismic micro-
zones.

The routine capabilities include:

e Plane wave propagation analysis in infinite and semi-infinite domains using absorbing bound-
aries.



e Point source wave propagation analysis in infinite and semi-infinite domains using absorbing
boundaries.

e Simulation of homogeneous and heterogeneous domains.

e Flexibility of boundary conditions like topographies of arbitrary shapes or dams in a strong
topographic environment.

e Results in the frequency domain in the form of spatial transfer functions between response
and incident motions and in the form of Fourier spectral amplitudes at a given point.

e Results in the time domain in the form of synthetic seismograms at user defined receivers
and videos of the propagation patterns inside the complete computational domain.

e Easy consideration of dispersive materials.

The implemented UEL subroutine has been tested in a standard desktop computer with 16Gb
of memory. Models as large as 6’000.000 degrees of freedom have been solved. The UEL subroutine
and the post-processing software can be downloaded freely from the Mecanica Aplicada web site
http://mecanica.eafit.edu.co/mecanica/.

This report is organized as follows. In the first chapter the wave scattering problem in elastody-
namics is reviewed in differential and integral form. The formulation used by Bielak & Christiano
(1984) in terms of total motions inside the scatterer and scattered motions inside the half-space
is presented. Chapter 2 describes aspects of the algorithm used in the solution of wave scattering
problems within the context of the finite element method (FEM). The idea of generalized variables
and a generalized principle of virtual displacements in complex algebra as required by the frequency
domain is introduced. The principle is then discretized but treating the real and imaginary parts
independently. In this chapter a couple of simple verification problems are solved. Applications of
the subroutine start in Chapter 3 with the problem of topographic and site effects in earthquake
engineering and continue in Chapter 4 with the diffraction and scattering of waves in a micro-polar
half-space. Conclusions and recommendations for further work are presented in the final part.

In the next section we include a brief review of the historical development of numerical methods
mainly in earthquake engineering.

Literature Review

The problem of scattering and diffraction of elastic waves by surface or subsurface irregularities of
arbitrary shape and in general by objects immersed in a homogeneous medium, finds application in
areas like the oil and natural gas industry, the mechanical characterization of rock blocks, the deter-
mination of topographic effects in earthquake engineering and the development of non-destructive
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mechanical testing techniques among many others.Solutions can be obtained via numerical simu-
lation and where complex combinations of geometry, material properties and boundary conditions
can be considered. An extensive amount of work on the subject from the numerical point of view
has been conducted during the last 30 years. Moreover, it has has been approached with different
techniques depending on the specific type of problem and available computer requirements.

In the case of infinite or semi-infinite media problems-as is the usual scenario in earthquake
engineering and geophysics-one of the challenges in the numerical solution, is the proper impo-
sition of radiation boundary conditions. This problem can be dealt with in a very natural way,
using integral equations formulations and its discretization in terms of different versions of the
boundary element method. In that approach the radiation condition is implicit in the specific
problem Green’s function. Solutions through different versions of the direct and indirect boundary
element method and corresponding to problems in different physical contexts are reported in Wong
& Jennings (1975), citesills1978scattering, Sanchez-Sesma & Rosenblueth (1979), Sénchez-Sesma
(1983), Dravinski & Mossessian (1987), Zhang & Achenbach (1988), Kawase (1988), Manolis &
Beskos (1988), Kawase & Aki (1989), Mossessian & Dravinski (1989), Sanchez-Sesma & Campillo
(1991), Kim & Papageorgiou (1993), Papageorgiou & Pei (1998), Janod & Coutant (2000), Itur-
raran-Viveros et al. (2005), Sohrabi-Bidar et al. (2010). Although BE-based solutions are very
accurate, its effective application to real size problems is very limited due to large computing
requirements. As a result, the method is currently being used as a tool to perform parametric
analysis in conceptual problems.

The first numerical solutions of wave diffraction problems with full domain methods, combined
with absorbing surfaces to represent the radiation condition were obtained in terms of classical
finite difference algorithms e.g.,(Boore, 1972; Archuleta & Frazier, 1978; Archuleta & Day, 1980).
One of the major drawbacks of finite difference schemes, is the appearance of numerical dispersion
near zones of large gradients of the field. Moreover, in large scale simulations—representative of
realistic problems-the balancing of the trade-off between numerical dispersion and computational
cost, turns out to be rather difficult, Komatitsch & Vilotte (1998). This numerical phenomenon
can be avoided using staggered-grid formulations (e.g., (Madariaga, 1977; Virieux, 1986; Levander,
1988; Moczo et al., 2007). Additional works using finite difference schemes, although mainly
related to seismic engineering problems, can be identified in Vidale & Helmberger (1988) in the
study of surface waves with a 2D model of the Los Angeles basin, Frankel & Vidale (1992) in the
response of the Santa Clara Valley to the 1989 Loma Prieta earthquake using one of the first full
3D models, Frankel (1993) in the response of the San Bernardino valley, Graves (1996) with a
model of the Marina district in California using staggered grids and similar works like Yomogida &
Etgen (1993), Olsen & Archuleta (1996), Stekl & Pratt (1998). Finite difference schemes combined
with other techniques to effectively account for free surfaces and general boundary conditions still
dominate the spectrum of numerical treatments of wave propagation problems.

A recent comparison of the results obtained with different methods-among which one finds FD’s
schemes-can be found in Bielak et al. (2010). Almost in parallel to the developments in terms of
finite differences, the other domain method that is naturally identified corresponds to the finite



element method. Early solutions to wave propagation problems were reported by Lysmer & Drake
(1972), Smith (1975), Ohtsuki & Harumi (1983), Mita & Luco (1987), Toshinawa & Ohmachi
(1992). The first large scale simulation with FEM implementations were performed by Bao et al.
(1998), who proposed and explicit algorithm embedded into an octree-based data storage scheme
allowing for the simulation of real large scale problems; the resulting algorithm however, was
restrained to problems without the consideration of topographic effects. These set of algorithms
were later improved by Bielak et al. (2003) and Yoshimura et al. (2003), where a domain reduction
method that allowed to effectively translate the source effects near the scatterer was proposed and
by Bielak et al. (2009), Taborda & Bielak (2010), where problems of frequencies up to 5.0Hz and
billions of elements have been solved.

Other recent classical FEM treatments can be found in Aagaard & Heaton (2004), Ma &
Liu (2006), Ichimura et al. (2007). The most efficient classical FEM algorithms to study wave
propagation at large scales correspond to explicit methods where the equilibrium equations are
uncoupled through artificial imposition of lumped mass matrix. Another class of methods that
has received much attention during the recent years corresponds to the so-called Spectral Finite
Element Methods. These find their origins in the spectral methods originally developed in the
context of fluid dynamics, eg., Orszag (1980), and in its later extensions to elastodynamics, Gazdag
(1981), Kosloff & Baysal (1982). Improved versions in the form of the early forms of the spectral
finite element methods were later proposed by Patera (1984) and Maday & Patera (1989) for fluid
problems and byPriolo et al. (1994) and Faccioli et al. (1996) for wave propagation problems. One
of the major limitations of these class of methods when dealing with wave propagation problems,
was related to the need for non-uniform spacing of the collocation points and strong requirements
in the time step. These drawbacks were later removed in the implementations by Komatitsch &
Vilotte (1998), Komatitsch & Tromp (1999), Chaljub et al. (2003), Komatitsch et al. (2004), Lee
et al. (2010), Lee et al. (2009a), Lee et al. (2009b) and Chaljub et al. (2010).



Chapter 1

The Wave Scattering Problem in
Elastodynamics

Introduction

The problem of scattering and diffraction of elastic waves, by mechanical and geometrical irregu-
larities, located over infinite or semi-infinite domains, is relevant in the analysis and design of civil
engineering structures subject to seismic events. In particular, there is a strong interest in finding
the appropriate design motions, when an incident seismic field interacts with a discontinuity in
the form of surface or subsurface topography. In the context of earthquake engineering the prob-
lem is termed the site effects problem, while in the more general context of the theory of wave
propagation, it is referred to like a scattering problem.

Mathematically, the problem corresponds to an Initial Boundary Value Problem (IVBP) satis-
fied over a semi-infinite domain and it is defined as follows: If one considers a prescribed incident
field, impinging over a geometrically perturbed half-space (that is, a half-space with a disconti-
nuity), the incident motions are modified by the geometrical disturbances, which subsequently
become sources of scattered motions. The purpose of the analysis is the determination of the total
displacements inside the scatterer and of the scattered motions over the half-space.

In the first part of this chapter, the differential equations representing mechanical equilibrium
and the corresponding boundary conditions for the scatterer and the supporting half-space are
formulated. The resulting boundary value problems in each domain, are then welded together
through displacement and tractions compatibility arguments along their common coupling surface
S. This yields a single well-posed BVP for the complete scatterer-half-space system. Considering
the full problem, it becomes evident that the half-space plays the roll of a radiation boundary
condition for the scatterer, carrying with it the sources and proper support conditions to be
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prescribed along the common coupling interface S. This work deals precisely with the imposition
of radiation boundary conditions in terms of Half-Space Super Elements (HSSE), that can be
incorporated into the scatterer discrete equilibrium equations in a commercial finite element code.

In the second part of the chapter, we formulate the BVP in the alternative form of integral
equations, with the aid of the elastodynamics representation theorem. The discrete versions of
this alternative formulations give rise to boundary element numerical schemes. As a result, the
following discrete approximations would be possible within the context of this work;

e An approximation in terms of a domain of standard finite elements combined with silent
boundaries.

e A semi-analytic description in terms of a boundary integral equation for the half-space using
the specific half-space Green’s function.

e An approximation in terms of a boundary integral equation for the half-space using a full-
space Green’s function and prescribed incoming motions.

In this work we only implemented the first of the above three approaches but extension to the
other two is straight forward.

1.1 Boundary Value Problem Governing the Scattering of
Elastic Waves

1.1.1 Differential Formulation

In the analysis that follows, the physically consistent initial boundary value problem, involving
space and time derivatives and properly specified, initial and boundary conditions, is cast into a
series of equivalent Boundary Value Problems (BVP) using the Fourier transform technique. As a
result the wave (or elastodynamics) equations of motion, take the form of the frequency domain
reduced wave equations, see Eringen & Suhubi (1975). For that purpose all the involved variables
are assumed to exhibit a time dependence of the form ew, where w represents circular frequency
and 7 = v/—1 is the imaginary unit. At the same time all the variables are assumed to have

a complex amplitude at a given point & of the general form F (Z, %w) when a time to frequency

transform is performed and of the form F (zﬁ, %w) when both, space and time are transformed. The
following sign convention is used for this general space-time Fourier transform:
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—00 —0O0

The reduced wave equation is now derived with reference to Figure 1.1 where we display an
arbitrary geometrical disturbance, (termed herein the scatterer), occupying a volume V; and resting
on top of a homogeneous elastic surrounding (half-space), occupying a volume Vj. By a mechanical
disturbance we mean the change in mechanical properties in the half-space from (pg, Ao, o) to those
in the scatterer (p1, A1, p1) through the internal surface S perfectly coupling the half-space to the
scatterer. Kach medium is characterized by its mass density p and Lamé constants A and p. In
elastodynamics however a more appealing definition of a medium is through its SV and P wave

propagation velocities defined like 5 = \/u/p and a = /(A + 2u)/p. The domain definitions are
completed by the exterior normal vectors 7 and n* to the scatterer and half-space respectively.

S, Scatterer S,

g (01,4, 1)

\

"\_ (/Oo ;Au > Ly ) A '," !
“-‘A -\.\. S -,A, ./'IA
Elastic half-space
VO e lieeT i TS‘D
S

Figure 1.1. Schematic description of the scattering problem.

Let the complete scatterer-half-space system, be subjected to an incident plane wave forming
an angle 6 with the vertical and assumed to be generated by an infinite and continuous distribution
of sources, located beyond the infinite boundary S, of the half-space, (dashed line in Fig. 1.1).
For a review of the definition of a plane wave, the reader is referred to Aki & Richards (2002). As a
result of the interactions between the incident wave and the body V7, an scattered motion uf (Z,1w)
is generated. This is an outgoing field that must damp out geometrically, reaching a vanishing
limiting value at the infinite boundary S,,. The purpose of the analysis is to determine the total
motions inside the scatterer u!(Z,iw) and the scattered motions v (Z,1@) inside the half-space.

It is convenient, for mathematical and engineering purposes, to express the total field inside the
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0

half-space u;(Z,1w), as the superposition of a free field motion ud(Z, iw) and the scattered motions

ud (7, 1w) like;

wi(Z,1w) = ud(Z, iw) + v (Z,1w)  for 7 € V. (1.1)

and where the free field term u)(7, iw), corresponds to the solution that would exist in the

half-space in the absence of the scatterer. This field can be found after solving the BVP for a
perfect half-space subject to the incident field u™(7,iw) and leading to a field reflected at the free
boundary Sr and denoted by uf(¥,iw) yielding;

u(Z,1w) = u™(F,1w) + ul(Z,1w) for 7 € V. (1.2)

With the above definitions at hand, the reduced wave equation governing the total motions
inside the scatterer can be written like;

1Liju(T,1w) + prwuf(T,iw) = 0 for T €V, (13)

with the BVP being completely by the boundary conditions along S;
th(n, &, iw) =0 for 7€ S (1.4)
and the coupling conditions along .S given by

(1.5)

In the above, the differential operator jL;; is the Navier operator from theory of elasticity for
the domain V}, and defined like;

0? 0?
Lo — .
elij = s+ k) Oy O0x;0x, + Hi O0x;0z,

which results after relating the Cauchy stress tensor o;; to the infinitesimal strains tensor ¢;;
through the generalized Hook’s law for an isotropic homogeneous medium and substituting the
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result into the conservation equations for the linear momentum. For a detailed review of the theory
of elasticity model the reader is referred to Love (2013).

Similarly, the reduced wave equation governing the scattered motions inside the half-space is
written like

OLijuf(f, w) + powul (Z,iw) =0 for ¥ € Vj (1.6)

and complemented with boundary conditions

t2(n*, Z,iw) =0 for ¥ € Sp (1.7)

and radiation boundary conditions along S,

ou? 4
lim r [i - muf} =0
r—00 or

(1.8)

lim uf(Z,iw) =0 for ¥ € Sa.
T—00

In (1.5) the displacements "u!(Z, iw) and u(Z, iw) and the tractions (7, 7, 1w) and °t!(A*, Z, iw)
represent total displacements and tractions along the internal coupling boundary S obtained as
limits approaching the boundary from the inside domain V; and from the outside domain Vj re-
spectively. Using the superposition for the total field in the half-space in terms of free-field and
scattered motions (1.1) these coupling conditions can also be written like;

. L . 1.9
Y (h, £, iw) 4 Ot (", 7, iw) + t2(n*, &, 1w) = 0 for ¥ € S. (1.9)

1.1.2 Integral Formulation of the Boundary Value Problem

The BVP governing the total motions inside the scatterer and half-space, can alternatively be
formulated in the form of integral equations with the aid of the elastodynamics representation
theorem Eringen & Suhubi (1975), Aki & Richards (2002). The resulting integral equations give
rise to discrete boundary element method (BEM) algorithms, Banerjee (1994). For completeness,
we also describe this technique since the resulting algorithms are highly accurate in the case
of infinite and semi-infinite domains. These BEM algorithms can be directly implemented into
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commercial finite element codes following the steps reported in this work since our formulation is
general.

In the presented integral representations, we consider formulations with a half-space and a
full-space Green tensor (i.e.,Lamb and Stokes tensors respectively). The representation in terms
of the half-space Green function—simultaneously satisfying radiation and free-surface boundary
conditions-results in a BEM discretization involving only boundary elements along the coupling
surface S (Fig. 1.1). In contrast, if one uses the full-space Green’s function, the discretization of
the half-space must be extended laterally beyond the coupling surface. In this section we introduce
the general elastodynamics representation theorem and apply it to generate two alternative integral
equations for the scattered motions in the half-space.

Representation theorem for the scattered field

Consider once again the total response in the half-space as the superposition of the free-field motion
plus the scattered waves, see Pao & Varatharajulu (1976)

wi(Z,1w) = ud(Z, iw) + uf (T, iw) (1.10)

and where the free field motion u? corresponds to the solution for the half-space in the absence

of the scatterer. Let us consider as starting point for all the subsequent integral formulations,
the exact elastodynamics representation theorem for the scattered motions at a point & over the
half-space Pao & Varatharajulu (1976) in terms of full-space Green’s tensors expressed by:

/ Hyj (%, iw, 2% §)us (&, iw) dS (%) + (1.11)
Sk

/ |Gy, )85 (7, 0°) — Hi (7w, 0" ) (7, 1w) | AS(F) for €€ Vo
Sp

where G;(7, %w;g) and H;;(Z, gw,ﬁ*;g) are the displacement and tractions Green’s tensors
respectively. The relevant surfaces and parts of the domain in this integral equation were already
described in Fig. 1.1. The representation theorem in Eq.(1.11), yielding the scattered motions
us (5, Ew) inside the half-space is exact, even for finite surfaces Sp and Sp as long as the fields

uf (Z,1w) and t]S (Z,1w; 7*) to be prescribed along Sp are the correct ones.
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In the integral formulation of the problem, it is convenient to write the radiation boundary
conditions at S, like;

lim [Gij(f, ww; g)tf(f, iw; 1) — Hij (2, 1w, 7 E)uf(f, w)| dS(z) = 0.

7—00 S,
oo

~

Boundary integral equation with a half-space Green tensor GZS (2, zw;g)

A first representation can be derived directly from Eq.(1.11) if the used Green’s functions satisfy
the free surface boundary condition. After using the integral representation for the radiation
conditions, we arrive at the following representation theorem for the scattered motions in the half
space;

(1.12)

~ ~

and where GJ1%(Z, ww; ¢) and HIS(Z, 1w, %, ¢) are the displacement and tractions Green’s ten-
sors for a half-space. The resulting BEM algorithm would only involve the mesh along the coupling
surface S as shown in Figure 1.2a. This approach may result computationally expensive since the
free surface boundary condition is difficult to satisfy. A known algorithm to enforce the traction
free condition is the discrete wavenumber boundary element method (DWBEM), Kawase (1988),
Kim & Papageorgiou (1993).

—

Boundary integral equation with a full-space Green tensor G;;(Z, w; ) and exact radi-
ation condition

If the radiation condition along S, expressed in integral form is subsequently imposed in Eq.(1.11),
we obtain the following exact representation for the scattered motions in the half-space:

(1.13)
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BEM mesh (M-elements along S)

(a) (b)

Figure 1.2. Definition of the domain and the different instances appearing in the BEM schemes

Since the traction-free surface Sr has to be rendered finite in the computational model, it is only
possible to satisfy Eq.(1.13) approximately as specified in Eq.(1.14) whereby we have used Sg to
denote its finite extension

(1.14)



Chapter 2

User Element Subroutine for Wave
Propagation Analysis in the Frequency
Domain

Introduction

In the particular case of commercial codes like ABAQUS or FEAP, the solution of a problem
through user element subroutines, requires that the element contribution to the global coefficient
matrix and excitations vector be provided. In this chapter we first describe the discrete form of a
generalized scattering problem in wave propagation, as defined in Chapter 1 in terms of scattered
motions. The shown matrix equations, are assembled by the code after receiving from the user the
assembly information and the contribution from each element.

Although most of the problems treated in this work, correspond to mechanical waves propagat-
ing in classical elastic models, our description is general in the sense that no reference to a specific
medium or kinematic assumption is made. For instance it can be easily modified to consider
problems of plane strain or plane stress, three dimensional elasticity, antiplane waves, micropolar
waves or even waves in other physical contexts. To maintain this generality we introduce the idea
of generalized variables, e.g., generalized stress, strain and primary degrees of freedom. Since our
formulation works in the frequency domain, we assume all these variables to be complex valued.

The finite element formulation follows classical ideas, starting from a generalized principle of
virtual work. In order to cast our algorithm in real algebra, we double the number of degrees
of freedom accounting for the real and imaginary part of each variable and perform the required
products in the generalized variational statement. Finally, after using interpolation in the classical
sense of the finite element method, we arrive at general equilibrium equations in the frequency

15
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domain for a generalized medium, but written in terms of real variables. The equilibrium equations
are written in terms of a generalized impedance matrix and a generalized loads vector. Since the
formulation is equally valid for any domains, e.g., finite, full-space or half-space, we particularize
the equations to the case of scattering by an object in a half-space, as is usual in earthquake
engineering applications. We explicitly show the form of the elemental contributions depending
on the part of the domain being occupied by the element.

In order to test the formulation we solve a simple, plane strain elasticity problem. We first
obtain the response using a commercial code. Next, we assume the material to have an artificial
complex valued modulus, so the resulting problem must be solved via our user element subroutine.
As a test we verify that our solution approaches the real, elasticity solution as the imaginary part
of the complex modulus approaches a null value. As a second verification example, we compute
the response of a semi-circular canyon under incident P waves. We obtain the spatial distribution
over the canyon surface of the frequency domain transfer function and compare it with the results
predicted by Wong (1982), Kawase & Aki (1990). This problem is revisited in depth in subsequent
chapters.

2.1 Discrete Formulation of a Generalized Wave Scatter-
ing Problem

In what follows we describe in a very general form the discrete version of the wave scattering
problem described in the previous Chapter. In particular we make emphasis on the so-called half-
space-super-element (HSSE) approximating the semi-infinite space boundary condition. The used
notation for the involved degrees of freedom is defined in Fig. 2.1.

In discrete terms the governing equations for the scatterer can be written like

[Ssciw)| {108} = {Fy(a)} (2.1)

where Sgc(iw) is the impedance or dynamic stiffness matrix for the scatterer, while 'F4(n) are
the interaction forces induced by the supporting half-space. Equation (2.1) is written in terms
of degrees of freedom along the coupling surface S. In that sense the terms 'Uf and 'Fi(n)
refer to limiting values for total nodal displacements and interaction forces evaluated over S, but
approaching the surface from the inside of V;.

Similarly, the discrete equations for the supporting half-space, formulated here in terms of
a half-space-super-element (HSSE) represent the plane wave excitation and radiation boundary
conditions. The equations for the super-element, can be achieved through either one of the formu-
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lations described in Chapter 1. These are written in compact notation in terms of an impedance
matrix Gps(iw) and interaction surface forces °F§(n*) for degrees of freedom over S like

(Gus(io)] {*Us} = {"F3()} (2.2)
Using the discrete version of the coupling (or jump conditions (1.9)) valid on S

Wt =Uf 4+ u°

2.3
YFHR) + O F9 (%) + FO(n*) = 0. (23)

and substituting (2.3) into (2.1) and (2.2), leads to the following discrete equilibrium equations
for the complete scatterer-half-space system

[Ssc(iw) + GHS@w)] (UL} = {_F;)(ﬁ*) + Gs(iw) Ug} . (2.4)

[
Sy Scatterer S,

/.\ _____________________________
Us U - U;

Figure 2.1. Definition of the degrees of freedom in a FEM discretization.

In (2.4) the loading term is composed of both, the incoming displacements U? and the consistent
incoming nodal forces F2(72*). Once the impedance contribution Gg(iw) for the half-space is
obtained, it can be coupled to any scatterer of impedance Ssc(gw). This last contribution to
global equilibrium, is regarded as a single finite element comprising the semi-infinite character
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of the half-space, its radiation boundary conditions and the effective loads corresponding to the
incoming field. We refer to this element as the Half-Space-Super-Element where;

~

Spssp(iw) +— Ggg)(iw)

0 ( 5 0 (2.5)
RHSggsp <— —FS(TL*) + GHS(ZW) * US.

In what follows we will derive a general formulation in real algebra of the frequency domain
complex variables problem in terms of generalized impedance matrices like those stated in (2.4).

2.2 Finite element formulation in real algebra

Let X;;, E;; and ¢; be a generalized stress tensor, a generalized strain tensor and a generalized
displacement vector and assume that the problem can be represented in terms of the following
generalized principle of virtual work;

14 v

S

where the complex stress, strain and displacements are defined by;

E; = Efl +1iE] (2.7)
¢ = off +id]

and where T; is a complex generalized projection of the stress tensor X;; in the direction defined
by the outward surface normal n and defined by T; = >;;7n;.

Performing the products specified in (2.6) using (2.7) yields
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R R I I
/ N0 EidV = / SESERAV — / SLOELdV —
Vv 14 \%

i / SRSERAV + / SROERAV

\% \%4

[ osondv = [oltsoliav — [ olsolav—
: : " (2.8)

i / pRSPLAV + / pLopldv
Vv Vv

/ Ti6¢idS = / TRo¢ldS — / T} 5¢;dS—
S

S S

i / TESLdS + / T!s¢fds

\4 Vv

and substitution of (2.8) in (2.6) after separation of real and imaginary components results in
the following real algebra PVW statements;

/ SEOERdV — / SL0ELdV — pu / OroPIdV + pw? / ¢j0¢;dV =
|4 \4 \4

\%4

/ TESpldS — / T!5¢ldS =0

i s (2.9)
/ SESELAV — / SLOERAV — pu? / pFoPLAV + puw? / olopRdV =
\% \%4 \%4 \%4

/ TEs¢ldS + / T!5¢RdS = 0.

S S

Introducing also a generalized constitutive tensor M;;;; (where the tensor M;;,; has imaginary
components different from zero only when damping is considered) we can write

Yij = MijEp. (2.10)
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In matrix form we have;

M= lej%kl _Minkl
Mi[jkl Mz‘]jk:l

Using (2.7) and once again separating real and imaginary parts we have the following real
constitutive relationships;

ER Mz]jklEkl M, lElgl

; Ik (2.11)
X M]klEkl + M]klEkl'

Discretization of each independent component of the generalized degrees of freedom, with
standard shape functions N/ and where ¢% and ¢¥ represent nodal values corresponding to the
real and imaginary displacements at the K"-node allows us to write;

R K&K
=N"o
¢ f (2.12)
5! = NK&E
Similarly we can write for the strain components
Eff = BEOR
(2.13)

I _ pK§Kk
EL = B!

Using (2.11)-(2.13) in (2.9) results in the following discrete versions of the generalized principle
of virtual work;

oK / BEMLE, BhAVOf, — 60% / BEM/, BhdV oy —

14 14
5K / BEM,, BhdV ot — 60 / BEME, BhdV®T —
v v (2.14)
puLsdx / NENPAVOL + pu?odl / NENPAV Y =
14 \%4

5HK / NERAS — 55K / NETIdS
S S
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SPI / BEME, Blav el — sof / BEML, Bhav oY -
14 14
SOK / BEM,, BhdV oy, — 6d% / BEME, BhdV oY —
' v (2.15)

pus DK / NENPav el + pu?idk / NENPAv ol =

SDK / NEtEAS + 6K / NETIS
S S

From the arbitrary condition of §®X and §®X in (2.14) and (2.15) we have the following
equivalent system of real equations in the unknown generalized nodal displacements <I>§ and <I>f ;

/ BEM, BLAV O, — / B M,

,BLdV o —

\%4 1%
puw’ / NENPav oL = / NETES

(2.16)
/ B M/, BhdV oy, — / BiME, BLdV Oy +
14 |4
pw?’ / NENFPAvor = — / NETHS
\% S
and
/ BEMLE, BhdV O, — / B M/, BhdV oy —
14 \4
puw® / NENPav ok = / NETRGS
(2.17)

/ B M, BhdV o} + / B M, BhdV oy —
\4 |4
pw? / NENPaqvor = / NETIds
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which can be written in matrix form like

J By MiaBudV [ By M Badv { bF }_
(2.18)
[ NENFav 0 [ NETEdS
~ 2 \74

N AL
0 [NENFPav |\ &F [ NET!dS
\% S

Since the stiffness term in (2.18) is anti-symmetric we actually solve the system for the modified

=P .
degrees of freedom ®; = —®T with the corresponding sign change in the impedance matrix terms
so symmetry is restored.

In the actual implementation, within the context of the user element subroutines in a commer-
cial finite element code, each element contributes with a coefficient matrix S(iw) given by;

ij

Stw) = | Y
(1) [ BMGBLAY [ BEME B
(2.19)
[ NENPdv 0
~ 92 Vv
pe 0 [ NENPav
v
and with a right-hand-side vector RHS(iw) of the general form;
| NETEAS
RHS(iw) = SfN.KT.de (2.20)
5

2.3 Scattering of plane waves

The problem domain and the corresponding degrees of freedom in each relevant region are once
again described for completeness in Fig. 3.1. The full domain is divided into; the scatterer V}
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bounded by the free surface S; and the internal surface S; the half-space V) bounded by the free
surface Sg, the internal surface S and the conceptual surface at infinity S,,. Notice that the internal
surface S couples the scatterer to the half-space subdomain. In a finite element representation of
the half-space, the conceptual surface S, must be approximated by a finite artificial truncation
surface Sp over which absorbing boundaries trying to mimic the radiation condition on S, are
specified.

We now specify the independent contributions from the elements located in each individual
part of the domain after using the following definitions for the generalized degrees of freedom:
®;=degrees of freedom in the interior of the scatterer and along the free surface 57, ®s=degrees of
freedom along the coupling surface S, ®;=degrees of freedom over the half-space and its boundary
(excluding S). Similarly,the impedance matrices are defined like S'(iw)=impedance matrix for
the scatterer, S(iw)=impedance matrix for the half-space and SP (iw)=impedance matrix for the
absorbing boundaries (and with a similar notation applying for the right hand side vectors).

By
S, m\ S,
! '-. y
g b (puAs)
Y (P03 o) 7

S

Elastic half-space

Figure 2.2. Definition of the problem domain.

In the actual implementation in a commercial software, we specified the following elemental
coefficient matrices S(iw) and right hand side vectors RHS(iw) through user element subroutines.

Scatterer Elements

Accordingly, we define the contribution from the scatterer elements to the global discrete equilib-
rium equations by the terms

R 1 1 N R
S (i) = [ ou S } RS (iw) = { 8 } (2.21)

St SS
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Strip Elements

Similarly, the contribution from the elements located in the half-space but in direct contact with
the scatterer is given by the terms

. S%s 1S9 S0 —S59,99
SO(iw) = l S?j S?j] RHS (iw) :{ S?gfbgl } (2.22)

and where % and ®) represent the displacement from the incoming field evaluated at the nodal
points along the coupling surface S and along an internal surface S; separated 1 element width
from S. This formulation corresponds to an application to the case of plane waves of the so-called
domain reduction method (DRM) proposed by Bielak et al. (2003) in the context of localized point
sources.

Absorbing Boundaries

Over the finite boundary Sp representing an approximation of the infinite surface S, the contri-
bution of the absorbing boundaries reduces to the specification of a complex spring with impedance
K. In the appendix we show the specific details of the implementation of absorbing boundaries
for an in-plane problem in a classical medium.

Global System

After assembling the different elements through the model the final global system of equations
reads;

SL S 0 0 o, 0
0 S Sho0 |} e [T shan (2.23)
0 0 0 K 3 0

where it must be noticed that over the half-space the problem is formulated in terms of the scattered
motions ®7 only.
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2.4 Verification Problems

2.4.1 Simple Elasticity Problem

In order to test the implementation the simple 2D plane strain static elasticity problem shown in
Figure 2.3 was considered. It consisted of a simple assemblage of second order quadratic elements
submitted to normal and tangential stresses. The problem was first solved with standard, displace-
ment based finite elements available in ABAQUS and then with the user element subroutine. An
artificious damping coefficient £ was used to introduced the imaginary components. A null value
of this damping parameter recovers the classical solution. The problem was additionally solved
manually.

10-(1+ 2-£1) 10-(1 + 2-£1) 10-(1+ 2-£)

$ 20:-(1 + 2-€1) $ 20:-(1 + 2-€i) i
>—C - — = 20-(1+ 2-£i)
3 14 2 1

10

Qs D P 1 Qs

16 12
@ = @ = @
] 5 a

Figure 2.3. Assemblage for static validation of the implemented user element subroutine.

In the case of a classical elastic material the generalized stress and strain tensors >J;; = (05, aifj)
and E;; = (eg, efj) are related through the generalized constitutive tensor M;;; defined as follows

for a plane strain problem
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A+20 A 0 A+2i ) 0]
A A+2u 0 A A+20 0
. 0 0 0 0 1
M= - s (2.24)
A+ 2/ 0 —(\+2u) -\ 0
A A+20 0 A ~(A+2u) 0
Y 0 @ 0 0 — ]

and where \ = 28I\, 1 = 2&ip, A and p are the Lamé constants from theory of elasticity, o;; is the
Cauchy stress tensor and ¢;; is the infinitesimal strains tensor.

The following set of complex loading was applied in the normal and tangential direction;

P, =
P e

20(1 4 2&1)

= 10(1 + 2€1)

(2.25)

with £ = 0.8, o = 0.3(1.0 + 2&2), E = 210.000(1.0 + 2¢1). We solved the problem manually,
with the implemented user element subroutine as initial validation and with classical real elements
using & = 0. The results from the manual solution and those obtained with the ABAQUS user
subroutine are reported in Figure 2.4 and 2.5.

1| 0.00393578651088299 1| -0.00139512887308985 1 0.00032714245321135 1| -0.00014937069932642
2| 0.00371666799869336 2 0.00020406790997263 2 0.00028941780829617 2 | -0.00000086346198049
3| 0.00417169422909165 3 0.00212795451845384 3 0.0002678573144259 3 0.00023625626876491
4| 0.00186935591999091 4 -0.0013582263899271 4 0.00002880254930232 4| -0.00031644035561756
5| 0.00182535636335764 5 0.00012429170740324 5 0.00017358220879394 5 0.00001237079102199
6 [ 0.00183930984718861 6 0.00164316798036898 6 | -0.00010646530556409 6 0.00033002190590041
7| 0.00110023309056272 7 0 7 0.00011483255402953 7 0
8 0 8 0 8 0 8 0
9| 0.00120565440882958 9 0 9 0.00001584175016246 9 0
uR= 10 0.0037800946719862| g - 10| -0.00056218131250896 ul = 10| 0.00026376515634328 V= 10| -0.00009974283640987
11 0.0028222351252681 11|  0.00016673054978939 11|  0.00021185251869656 11|  0.00001808564793262
12| 0.00181756350291542 12| -0.00047157240232492 12| 0.00016167214174675 12| -0.00009432230489915
13| 0.00283930099337698 13| -0.00143124983120709 13| 0.00023780255940929 13| -0.00028371236111073
14| 0.00389536620157263 14| 0.00092812890682681 14|  0.00026723776914495 14| 0.00016335443832307
15| 0.00283590411640301 15| 0.00192425800578054 15| 0.00012536974933209 15 0.0003541208863705
16| 0.00180234393977678 16| 0.00074306812237356 16| 0.00011098723101236 16| 0.00011726817741313
17| 0.00108171735746243 17| 0.00007157999071943 17| 0.00011173422181287 17| 0.00000487305531479
18| 0.00064241829665056 18| -0.00054441769151693 18| 0.00024840787383193 18| -0.00011007617631944
19 0.0009586810174442 19| -0.00078089943851515 19| -0.00003774444613844 19| -0.00006778328367357
20| 0.00096016867170048 20| 0.00090958574985241 20| -0.00014725158010776 20| 0.00005437655724128
21 0.00068574239944 21| 0.00070686279501932 21| 0.00018661150334495 21| 0.00007154886817347

Figure 2.4. Nodal displacements corresponding to the

manual solution.
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Node u.Magnitude u_real v_real u_imag v_imag
Label
1 4.18853434e-03 3.93578596E-03 -1.39512867E-03 327.142363e-06 -149.3706B0E-06
2 3.73350014e-03 3.71666742E-03 204.067881E-06 289.417745e-06 -863.455966E-09
3 4.69073188e-03 4.17169370e-03 2.12795427e-03 267.857220E-06 236.256252E-06
4 2.31086533E-03 1.86935568E-03 -1.35822617e-03  28.8025240e-06 -316.440302E-06
5 1.83779886E-03  1.82535616E-03 124.291691E-06 173.582172E-06 12,3707923E-06
6 2.46868283E-03  1.83930958£-03 1.64316769E-03 -106.465319e-06  330.021867E-06
7 1.10620935e-03  1.10023294E-03 -53.8849480E-36  114,832525E-06 -85.86998B6E-36
8 0. 59.9999982E-36 17.7698916E-36  96.0000006E-36  27.7399763E-36
9 1.20575831e-03 1.20565423e-03 66.1150541E-36 15.8417261E-06 106.130013e-36
10  3.83076118e-03  3.78009421E-03 -562.181231E-06 263.765076E-06 -99.74282156-06
11 2.83508189e-03 2.82223476E-03 166.730533E-06 211.852457E-06 18.0856496E-06
12 1.88468955E-03 1.81756320E-03 -471.572333E-06 161.672098E-06 -94.3222913e-06
13 3.18851881E-03 2.83930055E-03 -1.43124966E-03 237.802495e-06 =-283.712317E-06
14 4.01331671e-03 3.89536563E-03 928.128778E-06 267.237687E-06 163.354416€E-06
15 3.42940749€e-03 2.83590378e-03 1.92425773e-03 125. 369697e-06 354.120828e-06
16 1.95266772e-03 1.80234364€-03 743.067998e-06 110. 987196E-06 117.268166e-06
17 1.08982576E-03 1.08171720e-03 71.5799833e-06 111.734204€-06 4.87305624E-06

i8 877.951039e-06 642.418163E-06 -544.417591e-06 248.407829e-06 -110.076158E-06
19 1.23705191E-03 958.680874E-06 -780.899310E-06 -37.7444594e-06 -67.7832722e-06
20  1.33077148e-03 960.168545e-06 909. 585622e-06 -147.251587e-06 54.3765527e-06
21 1.00235781e-03 685.742300e-06 706. 862658E-06 186.611462e-06 71.5488568E-06

Figure 2.5. Nodal displacements corresponding to the UEL solution.

On the other hand, the results obtained with a null value of the artificial damping parameter
are exactly equivalent to the ones obtained with standard elements available in ABAQUS.

2.4.2 Scattering of Plane P waves by a Cylindrical Canyon in a Half-
Space

As a second verification example but now applied to a wave propagation problem, we solved
the scattering of a P wave incident against a cylindrical canyon in a half-space. This problem
has been previously solved by Kawase (1988) in the context of topographic effects in earthquake
engineering, using a boundary integral equation formulation with half-space Green’s functions
represented in the wave number domain. The problem has become a benchmark solution to
validate numerical methods and to develop fundamental understanding of topographic effects in
earthquake engineering. The geometry of the problem is shown in Figure 2.6. The characteristic
dimension of the canyon corresponds to a radius a = 1.0 Km. The mechanical properties of
the half-space correspond to p = 1kg/m3, 8 = 1km/s and a Poissons ratio v = 1/3. The
excitation consisted of a Ricker pulse of central frequency fc = 1.0 Hz, maximum frequency
fmazx = 4.0 Hz and time duration Tmax = 8.0 s applied at incidence angles (with respect to the
vertical) corresponding to 0° and 30° . The analysis in the frequency domain was conducted with
a frequency step of Af = fmax/32 . For the meshes were used 8-noded quadratic elements with
characteristic dimensions satisfying the \./10 criteria, where \. is the characteristic wavelength to
be propagated (see Figure 2.6 ). In the analyses, absorbing boundaries were located at 1.0K'm from
the bottom of the canyon. For this validation the spatial distribution of the transfer function along
the canyon surface is shown and compared with the solution computed with the in-house software
DAMIAN in Figure 2.7. This problem will be revisited in greater detail in the next section.
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Elastic Half Space

Absorbing boundary

Figure 2.6. Finite element mesh for the semi-circular canyon.
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Figure 2.7. Spatial distribution for the frequency domain transfer function over the canyon
surface for a dimensionless frequency 7 = 1.0. The function corresponds to the amplitude of the
Fourier spectral response normalized over the amplitude of the incident wave. The function on
the left corresponds to vertical incident and the one in the right to 30.0° incidence.
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Chapter 3

The Problem of Site Effects in
Earthquake Engineering

Introduction

The frequency and spatial variations introduced by local topography on seismic ground motions
are known to produce concentrated damage during earthquakes (e.g.,Northridge, California-1994;
Kobe, Japan-1997; Kocaeli, Turkey-1999). In the theory of elastodynamics the quantification of
these effects implies the solution of a wave scattering problem. Modern numerical techniques and
the available computer power, has led to the possibility of realistic simulations of these effects for
large scale regional domains, e.g.,(Bao et al., 1998; Okamoto et al., 2011; Taborda & Bielak, 2011,
Cupillard et al., 2012; Restrepo et al., 2012). At the same time, actual field records of large urban
areas have become increasingly available during the last years providing additional evidence of the
effects of topography. Despite these strong advances on the field, a detailed understanding of the
underlying physics of the problem is still required.

In this chapter we address the problem of site effects in earthquake engineering from two point
of views. In the first section of the chapter, we focus on the role played by the diffracted part of
the motion on the modification induced by surface topographies. This idea is motivated by the
fact, that in other problems related to propagation of acoustic and/or electromagnetic waves, the
diffraction field has been clearly associated to the interaction of waves with geometric singularities.
In earthquake engineering that idea has not been explored so far. In this work we use the numerical
solution corresponding to the complete field and with the aid of the geometrical theory of raids
we isolate the diffracted part of the motion. In particular we try to answer the question whether
or not this part of the response capture the modifications induced by the site effects problem.

The second problem, related to the study of site effects, deals with the question of regional
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versus truly local effects. In particular, we try to answer the question of how important are the
regional effects in the local response a given site. In order to explore an analysis approach to
this problem we use a simple model of a canyon with the shape of a circular sector containing
two localized regions with different material properties. We use our user element subroutines to
address both problems where the frequency domain response is highly relevant. As analysis tool we
proceed in a two-step algorithm taking as a starting point a method proposed by Professor’s Bielak
group at Carnegie Mellon University originally formulated to save computer resources maintaining
accuracy in the computations. That method has been called by its authors the domain reduction
method as will be described later. In this work, since a different use is being made of the method
we called it the modified domain reduction method.

3.1 The role of diffraction in the site effects problem

In this section we study the effects of topography on seismic ground motions, using a partition
of the field into physically meaningful terms based upon the concept of diffracted motions. In
earthquake engineering the terms scattering and diffraction have been used loosely as synonyms,
Sanchez-Sesma & Iturraran-Viveros (2001), Mow & Pao (1971), however they are not. A strict
definition of scattered field has been first attributed to Rayleigh: ” A scattered wave is the difference
of the total wave field observed in the presence of an obstacle and the incident wave”. In the case
of an obstacle being in a half-space, it is the difference of the total wave and the free field, Pao
& Varatharajulu (1976). On the other hand, according to Keller (1962), diffracted waves are
produced by incident waves which hit edges, corners or vertices of boundary surfaces or which
graze such surfaces. This connection between the diffracted field and the geometric entities in the
scatterer is expected to be reflected in the topographic effects.

The theory of diffraction has a long history. Its physical aspects have been studied in great
detail, mainly in the context of electromagnetic waves. A landmark contribution and converted
thereby in one of the building blocks for advancing the theory, is identified in the work of Som-
merfeld (1896). He found the complete solution for the diffraction of electromagnetic plane waves
by a semi-infinite crack in a homogeneous medium. Shortly after Sommerfeld’s work, MacDonald
(1902) delivered the solution for the total field on a wedge, under plane and cylindrical SH waves.
He wrote the total field as series expansions in terms of Bessel functions. A detailed study of Mac-
donald’s solution, highlighting various aspects of the diffracted field can be found in Sanchez-Sesma
(1985).

A major push to the theory was also imparted by Keller (Keller, 1956, 1957), who conducted
studies on the diffraction of electromagnetic waves by a convex cylinder and and aperture. Later
Keller (1962), initiated the development of the now well recognized geometrical theory of diffraction
(GTD). In one of his mains contributions he studied the canonical problem of a generalized wedge
composed of an edge enclosed by a convex or a concave surface. The most salient feature of the
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GTD is the introduction of diffraction coefficients, which upon application on the incident rays
hitting the geometric singularity would deliver diffracted rays (e.g., just like reflection coefficients
are used upon the incident field in a half-space). The diffraction coefficients in Keller’s work failed
on the transition regions adjacent to shadow and reflection boundaries. This was later improved
by Kouyoumjian & Pathak (1974) who completed Keller’'s GTD producing a workable expression
to predict the diffraction by a generalized wedge.

Within the specific context of earthquake engineering, the particular contribution from the
diffracted field to the total solution has not received much attention. In that area the problem
has been traditionally solved in terms of the scattered field. A possible explanation may be due to
practical reasons for both engineers and mathematicians and also, because of the lack of a sound
theory of diffraction of mechanical waves. A particular reference to the role played by the diffracted
field in the site effects problem can be found in the work of Sanchez-Sesma and its co-workers.
For example in Sanchez-Sesma (1985) the author revisited Macdonald’s solution directly in the
frequency domain. It was pointed out the fact that large differential motions were introduced by
the diffracted field in the presence of shadow zones.

A partition of the field into incident, reflected and diffracted waves is also explicitly displayed
by Sénchez-Sesma & Iturrardn-Viveros (2001) in the study of diffraction of plane SH waves by
a finite crack in a full space. They obtained a near field solution by superposition of two semi-
infinite cracks of the Sommerfeld type. These authors explicitly isolated the diffracted field. Later
[turraran-Viveros et al. (2010) followed the same technique to find the solution for the diffraction
by a cylindrical wave.

In contrast to the antiplane problem, in the case of in-plane waves the analytical solutions
related to the diffracted field are just a few and the problem has been studied mainly from the
numerical point of view. In this case complexities arise because of the coupling of boundary con-
ditions and mode conversions at interfaces. One of the few particular solutions directly addressing
diffraction is the one due to Achenbach (1973), who treated the problem of a semi-infinite slit un-
der longitudinal waves obtained via integral transforms together with the Wiener-Hopf technique
and the Cagniard-de-Hoop method. In the slit problem, the total field was shown to be composed
of the incident P wave, reflected and diffracted P and SV waves and head waves connecting the
diffracted P and SV fronts.

In a recent contribution Jaramillo et al. (2013), using the solution from Kouyoumjian & Pathak
(1974) as a building block, proposed a superposition based diffraction technique (SBD), to study
site effects due to topographic formations of arbitrary shape. In that method the surface topogra-
phy is partitioned into several generalized wedges, each one of which contributes with a primary
source of diffraction to the total field. Although the resulting method is cumbersome to apply if
one wishes to find the complete solution everywhere, it is a useful tool that can be used in the
interpretation of results from complex scenarios. It is in that study where we find the motivation
for this work.
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In our treatment of topographic effects we obtain the diffracted field from the complete solution
computed numerically. Our interest lies in establishing a connection between the topographic effect
and the diffracted motions. For that purpose we study the two simple problems of cylindrical
canyons of semi-circular and rectangular cross sectional shapes. Those two problems differ in the
number of diffraction sources. Although from the very concept of diffraction it is clear that it
is related to a geometric effect, the idea has seldom been explored in order to study the effect
of topography on earthquake induced ground motions. The physically based partition provided
by the diffracted field, is expected to reveal conceptual aspects of the response not evident in
the traditional scattering approach. In this chapter we address the effects of topography on the
incident ground motions using the diffracted field as a physical characterization of the site effects
that directly links the geometry of the scatterer to the motion at a given receiver. The aim of
this preliminary study is to contribute with the understanding of the topographic or site effects
problem by proposing an alternative methodology to isolate the geometric effects and to suggest
a partition of the field that can be used to isolate also the mechanical effects.

3.1.1 Prediction of the diffracted field

In the classical approach of the scattering problem, the solution is written as the contribution from
the free field and the scattered motions, Pao & Varatharajulu (1976). However, while the free-
field is well understood, the scattered motions are not. In problems involving arbitrary scattering
surfaces, like canyons and ridges, an alternative physically sound way of studying the topographic
effect is through the use of the concept of diffraction understood in the sense of optics. As described
before, the diffracted motions correspond to that part of the response that cannot be predicted by
geometrical methods. For example, if in a given problem the involved scattering surfaces are at least
C?-continuous and fully illuminated, a complete, continuous solution, can be constructed based
on geometrical methods without formally solving the elastodynamics wave equation. However, if
there are shadow zones or geometric singularities, the diffracted field is required in order to smooth
out any discontinuities existing in the geometric field. Our proposed analysis method is based on
this idea, where the total response is separated into the geometric and diffracted parts. In this way,
a direct physical connection between the solution and the topographic features of the scatterer can
be established in a source-receiver basis. In this section we describe these alternative partitions of
the field and establish different relations between the involved terms. In particular we show how
to obtain the diffracted field from the total displacement.

For the discussion that follows it is convenient to define the scattering problem with domain
defined in Figure 3.1. It is composed of the homogeneous isotropic elastic-half space V, with a
scatterer or topographic irregularity V;. The half-space and scatterer are assumed to be perfectly
coupled along the internal contact surface S. Similarly, Sp = traction-free surface of the half-
space, S, = external remote surface of the half-space where radiation conditions are prescribed:
whenever S, is rendered finite in a computational representation, this surface becomes the internal
truncation surface Sp and Sr becomes a finite surface denoted thereby like S r. The whole system
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is then subjected to incident harmonic plane waves with a time dependence et (which is omitted
here an hereafter) and where w = circular frequency and © = v/—1. The scatterer and half-space
are mechanically defined by the following parameters: p; = mass density, u; = shear modulus, \;
= Lame constant and where i=1, and 0 for the scatterer and half-space respectively. The purpose
of the analysis is to determine the motions in the scatterer and inside the half-space due to the
incident wave.

S Scatterer S

bAoA )

| G}M

(0’ s 40)
Elastic half-space

Figure 3.1. Definition of the problem domain.

In the classical formulation we write the total solution inside the half-space like;

u’ = u™ 4w+ 0 = b+ v (3.1)

where u!" =incident field, uf{=field reflected over the free surface of the half-space in the absence

of the scatterer and the field defined from the superposition /™ + u% = u% is the free field
evaluated along the (fictitious) contact surface S. Due to its mathematical nature we also refer to
this component of the total motion as the artificial incoming field. In (3.1), it is evident that the
scattered contribution u°, is the difference between the total motions and the artificial incoming
field ©%. This construction process of the final complete solution is schematically represented in
Figure 3.2.

Alternatively, the total solution could be written generalizing the concept of scattering as a
relative displacement as we elaborate next. With the aid of Figure 3.3 in a first analysis step we
solve the problem with the scatterer being removed but leaving the contact surface S as a free
surface where the traction vanishes. The solution to this intermediate problem can be constructed
superimposing the diffracted field u” to the geometric solution u% = u™ 4+ u% where uf=physical

reflection of the incident rays over the common interface S. The resulting partition is written like;
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Figure 3.2. Classical partition of the total solution into free field plus scattered motions.

u’ = u™ ol 4+ uP = ul o (3.2)

In analogy with the free-field motion v defined in Eq (3.1), we refer to the superposition
u!™ + uf = u% as the physical incoming field.

Figure 3.3. Partition of the solution into incident, physically reflected and diffracted fields.

If we now add the scatterer domain V) to the exterior half-space domain with free surface
Sp U S, it will introduce an additional field © so the total final solution can be written like;

u = u™ ol 4w ™ = ul P M (3.3)

In contrast to Eq (3.1), the superposition in Eq (3.3) is physical, as it naturally separates the

geometric contribution —represented by the term uf + uP— from that associated to the additional

scattered motions uM .
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Assuming now that the total field u” has been obtained (for instance, by a numerical method),
a comparison between Eq (3.1) and Eq (3.3) yields the scattered displacements

u™ = ot — Ul —uP. (3.4)

If there is no scatterer (e.g., no impedance contrast), then u™ = 0 and there are only geometric

modifications captured by the diffraction term u” as;

u? =u’ —ul. (3.5)

Notice that the general solution expressed by Eq (3.3) captures the unmodified half-space

solution in which case we have that u™ = u% — u% — «” which results after writing

u’ = ul +uP +uM =4, (3.6)

In order to obtain the diffraction term as indicated by (3.5), the problem is first solved numeri-
cally while the term u% is obtained by geometrical means as described in Fig. 3.4 for a semi-circular
shape. The reflection process is described after defining the radii of the circle R, the horizontal
variable z, the dimensionless horizontal variable « = x/R (v € [—1,1]) and the radial vector,
which is expressed as r = (a, v 1 — a?).

Figure 3.4. Geometrical theory solution for the semicircular canyon.

It follows that the angle 6 between the vertical and the radial vector, for each point over the

semicircle, reads
T2
acos ( 7 )

The reflected rays giving the field term uf are expressed in the general case as
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P =(2aV1—a21-2d% ,
q = (sign(a)y/1 — cos?(0y + 65), | cos(f + 65)|)

where

sin 0}

0y = gy = acos
(%%

for a P wave incidence, and
0y = O0p = acos [v, sinf],

for an SV wave incident and with v, = /3 being the ratio between the primary and secondary
waves speeds.

3.1.2 Scattering of P and SV waves by a semicircular and a rectangular
canyon

In order to study the connection between the diffracted field and the topographic effect, we selected
two simple problems. The first case corresponds to the semi-circular cylindrical canyon previously
studied by Wong (1982) and Kawase (1988). That problem has two singular sources of diffraction
located at the top rims of the canyon. As a second study case, we selected a canyon with a
rectangular cross-section and four concentrated sources of diffraction located over the top and
bottoms surfaces. In the case of oblique incidence both problems will also exhibit diffraction in
the corresponding shadow zones.

The canyons are geometrically defined by their depth H = 1.0Km, width B = 2.0K'm (for the
rectangular case) and radius a = 1.0K'm (for the semi-circular case). Note that in the rectangular
canyon a = B/2. The half-space is mechanically described by a mass density p = 1000Kg/m?, a
velocity of shear wave propagation = 1.0Km/s and a Poisson’s ratio v = 1/3. We performed
two different sets of analysis regarding the frequency content of the incident waves. In a first
analysis, we obtained the response of the canyons using a a Ricker pulse of central frequency
fe = 1.0Hz, maximum frequency f,.. = 4.0Hz and a time duration 7T,,,, = 8.0s. For this case
we obtained the geometrical solution over the canyon surface, so we were able to compute also the
diffracted field along this surface. In a second set of analysed cases we use a Ricker pulse of central
frequency f. = 4.0Hz, maximum frequency fi.. = 16.0Hz. The purpose of this analysis was
to obtained a time domain response of higher resolution so we were able to identify the different
phases appearing in the computational domain. In both cases we considered incidence angles
(defined with respect to the vertical) corresponding to 6 = [0°,30°]. The analysis was conducted
in the frequency domain with a frequency step of Af = f.4:/32 and Af = f,.4./256 in each



CHAPTER 3. THE PROBLEM OF SITE EFFECTS IN EARTHQUAKE ENGINEERING 37

set of analysis. The model responses were studied for a normalized frequency n = wa/7(3. The
amplitude of the frequency domain transfer function associated to the diffracted field, was obtained
from Eq.(3.5), after computing the total field 7 numerically, while the physically-based incoming
field UD, was obtained analytically.

Figure 3.5 displays the results corresponding to the case of an SV wave, incident at 6 = 0°
and 6 = 30° over the rectangular canyon (columns 1 and 2) and semi-circular canyon (columns
3 and 4). Rows 1 to 3 correspond to the vertical displacements, while rows 4 trough 6 show the
horizontal components. We show in each case, the spatial distribution of the transfer function
at the normalized frequency 1 = 1.0 associated to the diffracted field, total field and the related
synthetic seismograms along these same surfaces (rows 3 and 6). For the rectangular canyon the
range of € [—1.0,1.0] corresponds to the bottom of the canyon, while x >|| 1 || corresponds to
the canyon walls.

For the rectangular shape under vertical incidence, the diffraction effect is revealed by the
large amplification near the rims of the canyon, where the amplitude of the transfer function
corresponding to the vertical displacement component at n = 1.0 reaches a value close to 3.0. In
this case, as the main incident front encounters the bottom corners of the canyon, these geometric
singularities become sources of diffracted waves. From analytical solutions of the diffraction of a
P wave by a slit (Achenbach, 1973), we know that such a singularity, generates head waves and P
and SV diffracted waves. These last two exhibiting cylindrical fronts. In the current problem all
these fronts propagate vertically over the canyon walls and horizontally over the bottom surface.

To reinforce the analysis we also show in Fig.3.6 snapshots of the propagation patterns at four
different time instants. At ¢ = t1, the incident SV wave has already been diffracted by the corner
singularities at the bottom of the canyon, producing cylindrical diffracted P and SV waves. Over
the horizontal bottom surface, the leading diffracted P wave travels in phase with a head wave
(required to match the traction free boundary condition). The diffracted SV wave follows along the
same bottom surface and both (the P and the SV component) are tied by the head wave extending
from the surface to the inside of the computational domain. Similarly, over the vertical walls and
propagating upwards, one encounters the incident grazing SV wave, the cylindrical diffracted SV
wave, the cylindrical diffracted P wave and a joining head wave. It is interesting to observe how
the diffracted SV wave travelling alone over the bottom surface is enough to match the traction
free boundary condition, while it is coupled to the incident front over the vertical wall.

The incident and diffracted cylindrical waves, generated after the first interaction with the
bottom singularities, will also experience further diffraction as they encounter the opposite corners
of the canyon. To clarify this aspect of the response, one could use Huygen’s principle ideas to
think of the bottom corners like sources of diffracted cylindrical and head waves. If we refer to
this diffracted field as the primary diffraction, then it is clear that the primary diffracted field
will experience further diffraction as it encounters the opposite corners located over the horizontal
and vertical surfaces. This field should, by obvious reasons be termed the second order diffraction
effect.
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Eventually, the process of activation of Huygen’s sources of diffracted waves continues indef-
initely forcing energy to become trapped along the canyon surface in the form of higher order
diffraction. This effect is observed in the synthetic seismograms and also from the snapshot at
t = to9, as the increase in duration of the signals over the bottom surface. The larger amplification
at the canyon rims observed in the frequency domain resposne (see Fig. 3.5) is now evident since
at these locations the incident, reflected and primary diffraction fields will converge.

An additional point of interest regarding the diffraction field, is observed in the response inside
the computational domain in the snapshots at ¢t = t3 and ¢ = t4. In the first case, the cylindrical
SV diffracted wave, propagates in phase with the first reflected field. It is observed how these two
waves deplete each other as they move away from the canyon. In the second case, the diffracted
field generated by the top corners, propagates together with the reflected wave, in such a way that
it restores the front in the far field and as it moves away from the canyon. From these two opposite
cases it is clear how the diffracted part of the response, has the ability to complete or deplete the
field as required.

In the cases of incidence at 30° (columns 2 and 4 in Fig. 3.5), the propagation pattern is
complicated since the incoming field is composed of 3 sets of rays leading to the activation of
multiple diffraction sources. The first diffractor is activated when the incident SV wave, meets
the corner singularity in the illuminated zone as depicted in the first snapshot from Fig.3.6. Once
again the cylindrical diffracted P and SV waves are clearly identified. This primary diffraction
must deplete, in the far field, the reflection of the P wave in the left-most canyon vertical wall.
Similarly, in the snapshot at ¢ = t; the main incident SV wave and its associated diffracted
field, experiences second order diffraction by the right bottom corner, while the reflected P wave
is undergoing its first order diffraction. In this case the cylindrical P and SV diffracted waves
propagating over the horizontal surface, will diffract once again by the right bottom corner. In
the snapshot at ¢ = t3, the diffraction of the main incident wave is already filling up the shadow
zone and experiencing third order diffraction by the canyon top singularity. At that instant the
reflected P wave is experiencing second order diffraction. Finally at ¢ = ¢4, the multiple diffracted
waves are starting to complete the fronts of the free field, both in the shadow and illuminated
zones.

A similar behaviour is observed in the case of the semi-circular canyon under a vertically
incident field. For this problem the time domain response is depicted in the snapshots in Fig.
3.7. In the frame at ¢ = ¢; the incident field has just been reflected in the form of SV and P
waves. Along the canyon surface these three waves travel in phase, until they experience the first
diffraction event as shown at ¢ = t, where now the field is composed of the incoming wave plus the
diffracted P, SV and head waves. At t = t3 the diffracted field is approaching the edges where it
will undergo second order diffraction. In that frame and at ¢t = t4 the reflected SV front is already
being restored.
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Figure 3.5. Response of the rectangular and semi-circular canyons to SV waves incident at 6 =
0% and 6 = 30°. The results shown in rows 1 and 2 correspond to the spatial distribution over the
free surface of the frequency domain transfer function at the characteristic frequency f. = 1.0H z
associated with the diffracted (row 1) and total (row 2) vertical displacement component. The
results in row 3 are the synthetic seismograms over the canyon surface in each case. The first two
columns correspond to the rectangular canyon and columns 3 and 4 to the circular canyon.
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Figure 3.6. Response of the rectangular canyon to a vertically and a 30° incident SV
wave. The snapshots correspond to full particle motions. The full videos are available
at http://www.youtube.com/watch?v=genbmNxJPiw and http://www.youtube.com/watch?v=

NdijUjEWfAI&feature=youtu.be
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Figure 3.7. Response of the semi-circular canyon to a vertically and a 30° incident SV wave.
The snapshots correspond to full particle motions. The full videos are available at http://
www . youtube . com/watch?v=t1CKdgmioGY&feature=youtu.be and http://www.youtube.com/
watch?v=qcq-WYMEvSY&feature=youtu.be
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Figure 3.8. Synthetic seismograms for the semi-circular and rectangular canyon under incident
SV and P waves. Row 1 correspond to the SV case in the rectangular canyon. Row 2 correspond
to the SV case semi-circular canyon. Row 3 correspond to the P case in the rectangular canyon.
Row 4 correspond to the P case in the semi-circular canyon. Columns 1 and 2 depict the horizontal
and vertical field for 0.0° incidence while columns 3 and 4 depict the horizontal and vertical fields
for 30.0° incidence.
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3.2 The modified domain reduction method: Application
to topographic effects

3.2.1 The domain reduction method

The procedure used previously to determine the diffracted part of the motion u” corresponds to a

particularization of the two-step algorithm proposed by Bielak et al. (2003), in the so-called domain
reduction method (DRM). That approach was originally formulated as a means to effectively
translate the excitation due to a seismic source existing in the far field of a large computational
domain, to the vicinity of a localized region. In our current implementation, the DRM technique
was used to progressively construct the solution to a complex problem by adding domain parts and
its related fields. In our particular case, we expressed the total solution u” to a scatterer problem
after using the superposition given by Eq (3.3) which is repeated here for completeness in Eq (3.7);

u” = u™N 4 ul 4w M =l P M. (3.7)

In this section we use the DRM technique as analysis tool to address the problem of site effects
where we use the superposition process stated in Eq (3.7) to separate the regional effects from
the truly local effect. In particular, the question we try to answer is the following: If we want
to capture the local effects at a site, say where a building is to be designed then Ag; what is the
proper extension of the computational domain that must be considered in order to make a realistic
prediction of those effects? To clarify our idea further, consider the schematic representation of
Figure 3.10. Suppose that in that representation the problem consists in determining the site
effects at a micro-zone of a sedimentary valley, that at the same time is supported by a half-space
representing the bedrock.

Civil structure

Microzone

V2 (P2, 0, 1)

Elastic half-space S Sedhmentary valley

Figure 3.10. Full domain considering a structure and a micro-zone.
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In our proposed approach we perform a first analysis step, where we solve the scatterer problem
for a reduced version of the model shown in Figure 3.11, including the half-space and sedimentary
valley, but with the micro-zone and structure being removed. We denote the results from that
analysis like u%. This term will be referred to like the regional effect.

Elastic half-space S

0

\\'\ N v (po’/zo’:uu)

Figure 3.11. Reduced domain with the micro-zone and structure being removed.

In a second analysis step, we take the results corresponding to u%, which have been previously
stored in the vicinity of the micro-zone, and use them as an effective seismic excitation to study
the local response at the site as depicted in Figure 3.12

Vo (Pas 2 1) Sources
' S 00,70

P20

Vo (P> Aos y)

S. Absorbing
boundaries

Figure 3.12. Final domain for the micro-zone excited with the response from the reduced
domain.

The two step algorithm can be written like;
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u’ = ul + upz (3.8)

where u);z corresponds to the response in the microzone.

3.2.2 Application to topographic effects.

In this section the modified domain reduction method is applied in the analysis of the simplified
topography depicted in Figure 3.13. It is composed of a large canyon, resembling a typical cross
section of the Aburra sedimentary basin, and a localized softer soil deposit with circular shape,
representing a typical microzone. The canyon is 10.0Km wide x 1.0Km deep in its central
point. The bedrock material has a mass density p = 1.0Kg/m3, a shear wave propagation velocity
f = 1.0Km/s and a Poisson’s ratio v = 1/3. The localized soil deposit, on the other hand, is 600m
wide x 100m deep in its central point, while it has a mass density p = 1.0Kg/m?, a shear wave
propagation velocity 5 = 0.5Km/s and a Poisson’s ratio v = 1/3. The purpose of the analysis is
to identify the incidence of the regional effect in the localized response of the micro-zone and to
answer the question of whether or not that regional effect can be determined for a given region.
For that purpose we conduct three different analysis as explained next.

\LF’X :

HALFSPACE R17 \—\

micro-zone
R1, center (0,0.6)

Figure 3.13. Simplified model equivalent to the Aburrd valley with a localized soil deposit.

In a first step the full model is submitted to a vertically incident SV wave. This solution is
regarded as the exact referent solution. In an intermediate step, we solve the canyon for the same
vertically incident SV wave, but with the localized micro-zone being removed. The field resulting
from this analysis is stored as a database of effective excitations at a set of points where micro-
zones are expected to be located. We refer to this intermediate solution as the regional solution.
Figure 3.14 shows a set of points near a micro-zone where the regional solution is to be stored.
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Figure 3.14. Set of points near a microzone where the regional solution is stored.

In a second analysis step, referred herein as the local or reduced domain (DRM) model, the
micro-zone is assumed to be located over a homogeneous half-space, without regional topography,
see Figure 3.15. The local model is then solved with the field obtained from the regional model as
excitation.

‘L?X

micro-zone

T

Figure 3.15. Local model of the microzone.

The third and final analysis step, is intended to represent what is known to be a common
practice by engineers at a consulting office and where the microzone is described as a stack of layers
of different heights and material properties, assumed of infinite lateral extension and supported
by a rigid bedrock. The simplified model is then subjected to accelerations at the base in order to
determine the surface response. Here, instead of following the engineer’s one-dimensional approach,
we consider the local model (see Figure 3.15) and determine its response to a vertically incident
SV wave. This third analysis is termed here the classical analysis.
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All the analysis were conducted for a Ricker pulse of central frequency f. = 2.0H z, maximum
frequency f.: = 8.0Hz, extent of the time window T,,, = 16.0s and a frequency increment
corresponding to Af = fi4./128. In terms of the non-dimensional frequency defined like n = 2 x
a/ )\ these values correspond to 7. = 2.4 and 79,4, = 9.6. In order to determine the incidence of the
regional effect at the localized microzone, we compare in Figure 3.16 the spatial distribution of the
transfer function for the horizontal and vertical component of the system at n = [1.2,1.92,3.125].
From the results in the frequency domain, it is apparent that at least for the central location of
the micro-zone the regional effect is minimum, and the response at the central point is mainly
controlled by the mechanical effect. This may be explained by the symmetry of the canyon and
the fact that at the midpoint there is destructive interference of the diffracted motions.

Transfer Functions Transfer Functions Transfer Functions

(a) n =1.20 (b) n =1.92 (c) n =312

Figure 3.16. Spatial distribution of the frequency domain transfer functions for the horizontal
and vertical component of the response at three different values of the non-dimensionless frequency
7 for receivers located over the microzone surface.

In Figure 3.17 we also compare the Fourier spectral amplitude for the horizontal displacement
component at the midpoint. Once again, there is no difference between the results from the three
models providing additional evidence to the results obtained with the spatial transfer functions.

As a final verification Figure 3.18 compares the synthetic seismograms from the three analysis.
It is observed that the classical (or engineer model) underpredicts the displacement amplitude
and modifies the frequency content during the intense phase of the seismogram. From a physical
point of view, in the full model, which is representative of the realistic scenario, there are infinite
diffracted waves trapped between the rims of the canyon. These waves are neglected in the classical
model, however from the excellent agreement observed between the full and reduced model it is
evident that this diffraction effect is effectively carried by the excitation obtained with the regional
model.
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Ux

=+ Full Model
++=+ Modified DRM
<= Classic Model

Figure 3.17. Fourier spectral amplitude at the central point of the microzone obtained with the
complete model, DRM-model and classical model.

- 0.5

0 8 16 24 32 40 48 56 64 72 80 88 9 104 112 120 128

s Full Model
+++ Modified DRM
e=-= (lassic Model

Figure 3.18. Synthetic seismograms at the central point of the microzone obtained with the
complete model, DRM-model and classical model.

In order to consider a possible worse case scenario to objectively asses the potential benefits
of the DRM method as analysis tool to study site effects a second analysis was performed. In
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particular, a second microzone was considered, but now located near one of the diffraction sources
of the canyon. The complete model is described in Figure 3.19. For this analysis the classical (or
engineer) model of the microzone since the engineer always sees the soil deposit as resting on a
half-space with flat surfaces and with vertically incident waves.

R13
| :) |
- |
F X
HALFSPACE R17
micro-zone

R1, center (4.31,-0.16)

Figure 3.19. Simplified model equivalent to the Aburra valley with a localized soil deposit.

The same set of results obtained in the first model is also presented. Figure 3.20 depicts the
spatially distributed transfer functions, Figure 3.21 the Fourier spectral amplitude and Figure
3.22 the synthetic seismograms from the three considered methods. The agreement between the
results from the full model and the reduced domain method is almost exact, while the results from
the classical model exhibit significant differences. The classical model captures only the natural
frequency of the microzone, which is in part dominated by the mechanical effect. The classical
model however underpredicts the amplitude associated to the natural mode. From the analysis
conducted in section 4.1 it is known that near the edges of the canyon large amplifications due
to the diffraction effect should be generated. This diffraction effect, which is effectively being
captured by the regional model, and subsequently applied to the reduced model seems to be the
most relevant aspect of the excitation and the mechanical effect appears to play a minor role in
the local response. In a more detailed study a separation of the geometric effects contained in
the regional model and the mechanical effects, contained in the micro-zone, should be conducted.
That study should provide correction factors to be applied to the standard one-dimensional models
to account for the geometric effect.

The excellent agreement between the full and reduced domain results, suggest that the DRM
technique should be explored in more detail as a potential tool to study the problem of site effects.
In particular this method seems promising to be used, not only in the study of the physical problem,
but also as a tool to extract useful results from large scale simulations. This idea will be further
explored in the near future inside the Mecanica Aplicada Lab at Universidad EAFIT.
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Transfer Functions Transfer Functions Transfer Functions

T —— e Ux - Full Model o Ux - Full Model
eos Uz Full Model +~ Uz - Full Model = Uz - Full Model
S5% x- Modified DRM <= Ux - Modified DRM Ux - Modified DRM
< Uz - Modified DRM <= Uz - Modified DRM Uz - Modified DRM
U Cisic Mogal =8 Ux - Classic Model =5 Ux - Classic Model
58 Uz - Classic Model 25 Uz - Classic Model

(a) n=1.20 (b) n=1.92 (c) n=23.12

Figure 3.20. Spatial distribution of the frequency domain transfer functions for the horizontal
and vertical component of the response at three different values of the non-dimensionless frequency

n for receivers located over the inclined microzone surface.

Ux

o+ Full Model
+++ Modified DRM
=& Classic Model

Figure 3.21. Fourier spectral amplitude at the central point of the microzone obtained with the
complete model, DRM-model and classical model for the second microzone.
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Figure 3.22. Synthetic seismograms at the central point of the microzone obtained with the
complete model, DRM-model and classical model for the second microzone.



Chapter 4

Scattering in a Micropolar Solid

Introduction

At high frequencies, materials with micro-structure exhibit dispersive behaviour and the velocity
of wave propagation becomes frequency dependent. As a result, a travelling pulse becomes dis-
torted as it propagates. This may be interpreted as a micro-scattering effect, triggered when the
wavelengths of the incident field and the characteristic dimensions of the micro-structural features,
become of comparable size. The study of dispersive media is of interest in different applications
like, damage detection, non-destructive testing, rotational seismology, geotechnical engineering,
etc. This behaviour can be captured in numerical simulations through two different approaches.
First, explicitly including the micro-structural details in the computational solution of a classical
continuum model and second, using a non-classical continuum model.

Although the original idea of considering the micro-structure with enriched media was due
to Voigt (1910), the most prominent contribution to the field was due to Cosserat & Cosserat
(1909) who proposed the addition of rotational interactions between the material points in the
continuum manifold. Models inspired on the Cosserat’s idea flourished during the 1950’s and
1960’s (Truesdell & Toupin (1960), Toupin (1962), Mindlin & Tiersten (1963), Koiter (1964),
Mindlin (1964), Mindlin (1965), Aero & Kuvshinskii (1961), Mindlin & Eshel (1965), Eringen
(1966)) with special interest given to the description of observations of wave dispersion relations
at long wave lengths in the theory of crystal lattices and in neutron scattering experiments made
by Brockhouse & Huang (1958) Brockhouse and Iyengar (1958) and Gazis and Wallis (1962) Gazis
& Wallis (1962). At the same time, some experimental work was conducted by Lakes (1982) who
performed torsional resonant experiments on wet compact human bones to determine Cosserat
material parameters. He found length scales comparable in size to that of osteons.

Studies related to infinite and semi-infinite non-classical media, including the derivation of re-

o4
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flection /refraction coefficients, Green’s functions for full-spaces and radiation boundary conditions,
were performed by Parfitt & Eringen (1969), Airman (1972), Khan et al. (1971), Ignaczak (1972),
Tomar & Cogna (1995) and Tomar et al. (36). Similarly, and after the recent development of seis-
mic instruments capable of measuring rotations at a single point, interest was reborn in the study
of wave propagation in non-classical media in what has been referred to as rotational seismology
(Twiss et al. (1993);Takeo & Ito (1997), Takeo (1998a) and Takeo (1998b), Midya (2004), Kulesh
et al. (2005), Teisseyre & Gorski (2009), Kulesh et al. (2006), Kulesh et al. (2005), Igel et al.
(2007), Papargyri-Beskou et al. (2009), Gonella & Ruzzene (2007)).

In a non-classical model the material is still assumed to be homogeneous and the presence
of the micro-structure is considered through additional degrees of freedom or higher order kine-
matic effects. In this chapter we use the micro-polar continuum model from Cosserat & Cosserat
(1909) to consider dispersion. This frequency dependence of the propagation velocities requires
the simulation of plane waves to proceed in the frequency domain. The dispersive properties in
the Cosserat model are introduced through the addition of rotationally independent extra-degrees
of freedom. This kinematic enrichment gives rise to an additional propagation mode in the form of
micro-rotational waves, which become coupled to the (SV') shear waves. This dispersive property
of the medium is shown in Fig. 4.1.
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Figure 4.1. Dispersion for the micropolar waves.

As discussed above, in the case of dispersive media, the plane wave assumption requires the
simulation to proceed in the frequency domain since each phase must be treated independently
before synthesizing the response back to the time domain. In this chapter we first derive general
finite element equilibrium equations for a micropolar model. By contrast with a classical model
problem, where discrete equilibrium is stated in terms of nodal forces, in the case of a micropolar
solid there are also nodal equilibrium relations in terms of nodal moments. The general formulation
is then implemented into our user element subroutine to address the diffraction by a semi-circular
canyon embedded in a micropolar half-space.
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4.1 Non-classical Cosserat micropolar material

Consider a micro-polar elastic solid defined by Lame classical paramters A and u, by Cosserat
paramters u., v and £ and by mass and micro-inertia densities p and J respectively. For de-
scription of the micropolar model the reader is referred to Cowin (1970). In a micropolar solid
in addition to the macro-rotations or asymmetric component of the displacement gradient tensor,
there are also independent rotational degrees of freedom 6; at each material point. As a result,
the continuum model is now endowed with additional dynamic and kinematic modes, describing
rotational interaction between the material points. The equilibrium equations for the 2D plane
strain case are given in Eringen (1966), Kulesh (2006) and Cowin (1970) among others, and we
just define the generalized stress and strain tensors to be used in the generalized finite element
implementation described in the previous chapter. Denote the displacements and Cosserat micro-
rotation vectors at a field point & and a the time instant ¢ by u;(Z,t) and 6;(Z, t) respectively and
assume that u;(x,t) = u;(x)e™™" and 6;(x,t) = 0;(x)e™".

The associated kinematic variables in a micropolar solid are given by ¢;;, 'y;;‘- and k;;, corre-
sponding to the classical infinitesimal strain tensor, the antisymmetric part of the relative defor-
mation tensor (i.e., the difference between the displacement gradient and the micro-displacement
gradient) and the curvature tensor. At the same time, the relevant stress variables are de-
fined by 7;; =classical symmetric Cauchy stress tensor, o;; =relative force stress tensor (with
Y;; = my; + 0,5 =total force per unit surface stress tensor), p;; =Cosserat couple stress tensor,
t; = Y;;n; =force per unit surface tractions vector, m; = p,;;7; =couple per unit surface tractions
vector, n; =outward surface normal vector. The following principle of virtual work for a Cosserat
solid, see Cowin (1970) can be derived;

S

\%4 14 %4 S

pr/uﬂuidV — Juﬂ/eiaeidv =0.

1% \%

(4.1)

The real part of the constitutive tensor relating stress quantities to strain quantities in the
micro-polar solid is defined like;
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A+20 A A 0 0 00
A oAF2u A 0 0 00
A A A+2u 0 0 00
M=| 0 0 0  p+pe p—pe 0 0 (4.2)
0 0 0 p—pe p+p 00
0 0 0 0 0 ~ 0
0 0 0 0 0 0 7

4.2 Finite Element formulation

Define the displacement and micro-rotation interpolation functions like ,NF and ¢NF, where the
superscript k makes reference to the contribution from the k — th node of a given element. Using
these functions we can write for the interpolated displacements and micro-rotations vectors at a

given point inside the element the following relationships in terms of the k-th nodal variables u*
and 6*;

It is convenient to express the micro-rotation vector #; in terms of its dual anti-symmetric
rotation tensor 6;; with the aid of the permutation tensor e;;;, as

Qij = €qij gN‘fek = RZQk .

Interpolation relationships for the derivatives of the primary fields u; and 6; follow

€ij = Bkuk, wij = Wkuk,
k pk A ik, k k pk (44>

where the tensor w;; denotes the anti-symmetric part of the displacement gradient. Substitution
of (4.3) and (4.4) in (4.1) yields the PVW in terms of virtual nodal variables
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+56* / My dV — pw?éu® / WNFwdV — Jw?60F / oNFO;dV (4.5)
Vv \4 Vv

—ou” / NFtdS — 56" / oNFm;dS =0 .

S S

Using the arbitrary character of the virtual fundamental fields du* and d6* in (4.5), gives the
following set of weak equilibrium equations in terms of nodal forces and nodal moments consistent

with the stresses and couple stresses;

fr+fr—Ji-1"=0
ko ok

Sk ok
m, +m, —m; — ¢ =0.

Introducing the constitutive relationships

A
Yij = Cijriers + Gijravig

Hij = Dijszfkl

(4.6)

(4.7)

where Cjjp, Gijw and D;j, are the micro-polar elasticity tensors, allow us to write the equilib-

rium statements (4.6) in matrix form as

5 )5}
Koy Koy o7 0 My

and where the following definitions apply:

w {0 (15)

Khe — / BCyuBLdV + / WEGuWhHaV = / BECijuBYdV + / uWEWEAY
Vv Vv
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which is symmetric.

K = / WEGuRyAV =
14

\%4

T
. k k
with K = <K95> )

Kgg = /RZGUMR%CZV—F/MZ;DUklM]fldVE
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which is also symmetric.
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Similarly, the inertial terms, which are both symmetric are defined like

iz [ e

\%4

My? = J / oNF gNPAV.
Vv

Finally, the external force and moment vector read
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4.3 Scattering of P waves by a semicircular canyon in a
micropolar half-space

As an application of the numerical scheme described above and implemented through the user
element subroutines (UEL) into the commercial code ABAQUS, we study the scattering of plane
body waves by a semi-circular canyon in an elastic micro-polar half-space. In the case of a classical
continuum, the problem has been previously solved by Kawase (1988) in the context of topographic
effects in earthquake engineering using a boundary integral equation formulation with half-space
Green’s functions represented in the wave number domain. The same geometry, but under the inci-
dence of SH waves, was addressed by Trifunac (1973), who found a solution in terms of expansions
in eigenfunctions in a polar coordinate system. In both cases, the semi-circular canyon problem has
become a benchmark solution to validate numerical methods and to develop fundamental under-
standing of topographic effects in earthquake engineering. For the case of non-classical media, like
the current Cosserat micropolar model, there is no such a comprehensive study. The current work,
although is not exhaustive constitutes a first approach to the scattering problem in a micro-polar
medium. In this work the problem can be interpreted in a more general context depending on the
values of the mechanical parameters selected for the micropolar model as will be described later.

The problem is first addressed in the frequency domain where we solve the system given in (2.4)
for a discrete range of frequencies. Each solution step, for a given frequency, amounts to finding
the steady state response for an incident plane wave of unit amplitude and frequency w and with a
time dependence of the form e, Accordingly, the solution throughout the whole frequency range
corresponds to the Fourier spectral response denoted like U(iw) and V(iw) for the horizontal
and vertical fields respectively. In particular we are interested in the transfer function (TF) or
ratio between the spectral response amplitude and that of the incident field. For instance, if the
horizontal response is given by U = Ug + iUy, then the U—field transfer function is defined by the
ratio of ||U|| = [U3+U?]'/2 to the amplitude of the incident wave. To find the time domain response,
the incident plane wave is described by a Ricker pulse defined as u(7) = (272 f272 —1)exp(—n2 f372)
where f. = the nondimensional characteristic frequency of the pulse, 7 = the nondimensional time
tf/a where t is the real time, a = the radius of the canyon and g = the classical shear wave
propagation velocity. The final time domain response at a given point is obtained after inverse
Fourier transforming the product of the response |[ul| and the Fourier spectra for the pulse denoted
by R(iw).

We solved the problem for f. = 1.0 Hz, fa:. = 40Hz, a = 1.0 km, p = 1.0 kg/mS, b =
1.0 km/s, gt = 1.0 x 106 N/m?, J = 3.33 x 10° kg/m, £ = 1.0 x 10'2 N and v = 1/3 and vertically
incident P waves. The results are obtained using both, the classical and the micro-polar model.
In order to give some preliminary interpretation of the results, it is convenient to describe the
mechanical parameters in terms of the coupling number N? = p./(u + p.), which indicates the
degree of coupling between the macro and micro-structure. When N — 0 the micro-rotations occur
independently of the macro-rotations and the relative stress term o;; is small; we refer to this case
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as the uncoupled state. In contrast, a large value of N indicates a strong coupling between the
micro-rotation and the macro-rotation, with large relative stresses. On the other hand, it is also
convenient to introduce the concept of a length scale parameter describing the characteristic size
of the micro-structure. Here we use as a length scale parameter (> = &(u + pe)/2ppe. We have
selected a value corresponding to ¢ = a which is representative of the scattering by a defect (i.e.,
the cavity) with a characteristic dimension close to the microstructural length scale. As a first
verification of the correctness of the implementation and of the model, we selected micro-polar
parameters close to zero, so the classical solution could be recovered with the enriched model.

In Figure 4.2 the frequency domain results are shown in terms of spatial distributions for
receivers along the cavity surface, of the transfer functions at the specific value of the dimensionless
frequency n = wa/m8 = 2a/\ = 2. In the figure we show the results corresponding to the classical
and micropolar model.
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Figure 4.2. Spatial distribution of the transfer function along the cavity surface under vertically
incident P waves.

A general observation from the obtained transfer functions, is the increase in the scattered
component of the response due to the micro-structural effect. For instance, under vertically incident
P waves the incident field is fully composed of vertical displacements, while the horizontal motion
is completely generated by the scattered field. As a result of the micro-structural effects additional
amplifications associated to the horizontal displacement component appear over the canyon surface
as compared with the classical result. This is an expected result since the scattered field is mainly
composed of shear waves which are precisely the ones affected by the micro-structural properties.

The solution in the time domain is presented in Figure 4.3, where the time histories along
the cavity surface are shown. As already observed from the frequency domain response, the
scattered component, corresponding in this case to the horizontal field experiences dispersion.
This is observed by the distortion in the pulse as it propagates throughout the surface. At the
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same time, the size or micro-structural effect result in reductions in the duration, since the P wave
and the SV wave propagate in phase due to the increase in velocity of the shear wave.

-

s -~

%

Classic U field Classic V field Classic theta field

(b) (c)

Cosserat U field Cosserat V field Cosserat theta field
(d) (e) (f)

Figure 4.3. Synthetic seismograms for the semi-circular canyon in a micropolar half-space under
vertically incident P waves.

A second analysis was performed with the same set of mechanical parameters but with a pulse
characterized by a central frequency f. = 4.0 Hz and a maximum frequency f,,q. = 16.0 Hz in order
to increase the dispersion in the model. Figures 4.4 and 4.5 depict the complete transfer function
and synthetic sesimograms for receivers over the canyon surface. Comparing the seismograms
corresponding to the horizontal field (which is rich in scattered motions) it is clear how in the
classical model the P and SV phases appear separated and propagating at different velocities. In
the micropolar model both phases become a single one resulting in a reduction in the duration and
frequency content of the response. Figure 4.6 displays snapshots of the propagation patterns over
the computational domain for the classical and micropolar model. At #; the incident non-dispersive
P waves have travelled the same distance and both pulses retain their original forms. At ¢5 the
incident wave has already been diffracted by the canyon free surface. In the classical case the
diffracted P and SV waves are clearly identifiable. In the micropolar case however both phases
are becoming to intercalate with one another as a result of the higher velocity of propagation in
the shear wave. In the subsequent snapshots at t3 and t4, the separation between the diffracted P
and SV waves grows, but at a higher rate in the classical model.
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Figure 4.4. Frequency domain transfer functions for the classical canyon (left) and micro-polar

canyon (right) for receivers over the canyon surface.
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Figure 4.5. Synthetic seismograms for the horizontal and vertical fields over the semi-circular
canyon surface with the classical material (left) and the micro-polar material (right).
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Figure 4.6. Snapshots of the propagation patterns in the semi-circular canyon with a classical
model (left) and a micro-polar model (right). The full video is available at http://www.youtube.
com/watch?v=y-3j5BdTDaw&feature=youtu.be
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Conclusions and Further Work

Conclusions

The wave scattering problem in classical elastodynamics was reviewed and formulated both in
differential and integral form. The formulation was described in terms of total motions inside the
scatterer and relative or scattered motions inside the half-space.

A user element subroutine (UEL), to solve the scattering problem in a generalized wave propaga-
tion analysis over infinite and semi-infinite spaces in the frequency domain, has been implemented
into the commercial finite element code ABAQUS. The subroutine overcomes the existing limita-
tion of allowing only real-valued implementations in terms of user elements. This was achieved by
treating the complex-valued problem as two separate real-valued problems, which independently
account for the real and imaginary parts of the response. The subroutine can be used in everyday
engineering practice with minimum data preparation.

The versatility of the subroutine was demonstrated by its application to solve mechanical
wave scattering problems in a classical elastic model and in a non-classical micropolar model.
Furthermore the subroutine can be easily extended to consider additional kinematic assumptions
or even different physical contexts, like horizontally polarized shear waves or electromagnetic waves.

As application examples the UEL subroutine was applied to the solution to three different
problems, as follows next.

Scattering in a micropolar model

The problem of scattering of vertically incident P waves by a semi-circular canyon supported by
a micro-polar half-space was solved. In such a model the transverse SV waves behave disper-
sively leading to a different diffraction pattern as compared to the solution with a classical model.
The consideration of a material micro-structure in this non-classical continuum model resulted
in modifications to the frequency content of the response. In part this is due to the shear wave
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propagation velocity exceeding the longitudinal wave propagation velocity for certain phases of
the signal according to its frequency. As immediate future development of the subroutine, it must
be extended to consider also incident shear waves. In the field of seismic engineering Cosserat
models are known to be applicable to study rock mechanics, granular soils at high frequencies
and recently in the study of what has been called rotational seismology. On the other hand, a
natural and relevant question that can be addressed in the future with the aid of the user element
subroutine, is related to the physical basis of the enriched or non-classical continuum models. This
can be done via a wave propagation analysis of the material described with a Cosserat-like model
and with a classical model, but considering the complete microstructural details.

The role of diffraction in the problem of site effects

By solving the two simple wave scattering problems of a semi-circular and a rectangular canyon, a
method was proposed to separate the diffracted part of the response from the total solution. This
diffracted component is expected to contain all the relevant information about the topographic
effect and a preliminary analysis showed how the amplifications of the ground motions near these
simple shapes, was connected to the diffracted field. It was identified that in order to advance in
the development of this approach, the solution to some fundamental or canonical problems must
be obtained first. For instance knowing and understanding the diffraction produced by a wedge is
instrumental to reveal the physics behind the diffraction of in-plane waves. That solution would
serve as analysis tool to interpret the results from complex geometries. Such solution must be
obtained numerically.

The domain reduction method to study site effects

The domain reduction method proposed by Professor Jacobo Bielak at Carnegie Mellon University,
was applied to study the idealization of seismic microzones over a sedimentary basin in the form
of a canyon. For the canyon a cross section representative of those existing in the Valle de Aburra
was considered and two simple soil deposits or microzones were placed at extreme locations inside
the canyon. The domain reduction method was used to capture, in a multi-step analysis, the
regional geometric effect and to subsequently transfer it in the form of effective excitations to the
different micro-zones. The obtained results suggest that the method is effective as analysis tool of
the topographic effect in earthquake engineering and it will be further explored in the immediate
future.

The commercial code ABAQUS together with the implemented UEL subroutine was used to
solve problems as large as 6’000.000 degrees of freedom in 16Gb of memory desktop computer.
This computational power is currently being used at the Mecanica Aplicada Lab to study the
seismic response of gravity dams and other problems related to earthquake engineering.
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The user subroutine, ABAQUS input files corresponding to sample problems and other related
material can be downloaded freely from the Group’s web site.



Appendix A

Sample Problem: Scattering by a
Semicircular Canyon

As a verification, the transfer function for the dimensionless frequency n = 1.0 corresponding to a
P wave vertically incident on a semi-circular canyon is presented in Figure A.1
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Figure A.1. Transfer function for the semi-circular canyon under vertically incident P wave.
these results correspond to the mesh shown in Figure A.2 and the input file together with the

ABAQUS user element subroutine can be downloaded from the link https://www.dropbox.com/
sh/c135rpynvéynytf/qWCS4s21gl/CLASSICY%20UEL.
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Figure A.2. Mesh for the semi-circular canyon under vertically incident P wave.
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